封面
市場調查報告書
商品編碼
1836405

光學積體電路市場預測(至 2032 年):按產品類型、組件、整合類型、原料、應用、最終用戶和地區進行的全球分析

Photonic Integrated Circuits Market Forecasts to 2032 - Global Analysis By Product Type, Component, Integration Type, Raw Material, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球光學積體電路 (PIC) 市場規模預計在 2025 年達到 177 億美元,到 2032 年將達到 619 億美元,預測期內的複合年成長率為 19.6%。

光子積體電路 (PIC) 市場專注於將多種光子功能(例如雷射、調製器和檢測器)整合到單一晶片上。 PIC 可實現高速資料傳輸、低功耗以及光學系統的小型化,使其成為通訊、資料中心和感測應用的關鍵。高速光纖網路、雲端運算和新興 5G/6G 基礎設施日益成長的需求推動了市場的成長。矽光電的進步、製造擴充性以及政府對下一代通訊技術的支持,正在加速全球市場的普及。

高速資料傳輸的需求

高速資料傳輸需求的不斷成長是推動光積體電路 (PIC) 市場成長的主要因素。通訊、資料中心和雲端運算等行業需要高速、低延遲的通訊系統來處理日益成長的資料流量。利用光進行資料傳輸的 PIC 相比傳統電子電路具有顯著優勢,包括更高的頻寬和更低的功耗。 5G 網路的廣泛應用和人工智慧應用的快速成長進一步擴大了這一需求,因為這些應用需要先進的光互連來實現高效的數據處理和通訊。

製造成本高

製造光積體電路需要複雜的製程和專用材料,導致製造成本高。混合整合和單晶片整合等技術需要精確的製造方法,並且可能需要大量資金。此外,對無塵室環境和精密設備的需求也增加了整體成本。這些高成本可能會限制光積體電路的廣泛應用,尤其是在中小企業中。此外,製造流程缺乏標準化會導致不一致和產量比率問題,進一步增加製造成本。

5G和資料中心的成長

5G 網路的擴展和資料中心需求的不斷成長為光積體電路市場帶來了巨大的機會。 5G 技術需要高速、低延遲的通訊系統,而 PIC 可以有效率地實現這一點。同樣,資料中心需要高頻寬互連來管理不斷成長的資料流量。 PIC 提供的解決方案能夠實現更快的資料傳輸,同時降低功耗。人工智慧和機器學習在資料中心的整合進一步推動了對先進光互連的需求,使 PIC 成為通訊和資料基礎設施發展的關鍵組成部分。

監管挑戰

有關環境影響、材料使用和製造流程的嚴格法規可能會阻礙PIC的開發和部署。遵守這些法規通常需要在研發和現有生產設施的改造方面投入大量資金。此外,不同地區缺乏標準化法規可能會造成市場准入壁壘,並使國際貿易複雜化。這些監管障礙可能會減緩PIC的採用,並增加整體生產成本。

COVID-19的影響:

新冠疫情對光積體電路市場產生了多方面的影響。它帶來了供應鏈中斷、生產設施暫時關閉等挑戰,但也加速了對數位通訊的需求以及光積體電路(PIC)等先進技術的採用。遠端辦公、線上服務以及對數位基礎設施的日益依賴,凸顯了對快速高效通訊系統的需求,從而推動了光積體電路市場的成長。隨著各行各業逐漸適應後疫情時代,在通訊基礎設施和數位轉型持續投入的支持下,光積體電路市場的長期前景依然樂觀。

預測期內,收發器市場預計將成為最大的市場

預計在預測期內,收發器領域將佔據最大的市場佔有率。收發器將發送器和接收器整合到一個模組中,是光纖通訊系統的重要組成部分,有助於實現高速資料傳輸。資料中心、5G 網路和人工智慧應用日益成長的需求需要高效、大容量的收發器。基於 PIC 的收發器具有尺寸更小、低耗電量、性能更佳等優勢,使其成為現代通訊系統的首選。預計這一趨勢將在未來幾年推動收發器領域的成長。

混合整合領域預計將在預測期內實現最高的複合年成長率

混合整合領域預計將在預測期內實現最高成長率。混合整合涉及組合不同的材料和技術,以創建充分利用每個組件優勢的光子電路。這種方法可以將雷射、調製器和檢測器等各種功能整合到單一晶片上,從而提高性能並實現小型化。 IT和通訊、資料中心和人工智慧系統等應用領域對更小、更高效能設備的需求日益成長,這推動了混合整合的普及,預計該領域將以較高的複合年成長率成長。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率。這種主導地位得益於半導體和光電產業主要參與者的存在、對研發的大量投資以及先進技術的快速應用等因素。該地區強大的基礎設施,加上政府支持技術創新和數位轉型的舉措,進一步鞏固了其在市場上的主導地位。此外,通訊、醫療保健和國防等領域對高速通訊系統日益成長的需求也推動了北美PIC市場的成長。

複合年成長率最高的地區:

預計亞太地區在預測期內的複合年成長率最高。這一成長主要得益於中國、日本和韓國等國家快速的工業化和數位化,這導致對先進通訊技術的需求不斷成長。該地區強大的製造能力,加上政府推動創新和技術應用的舉措,為光積體電路市場的成長創造了有利的環境。此外,對資料中心、5G基礎設施和人工智慧研究的投資不斷增加,也進一步推動了亞太地區對光積體電路的需求。

提供免費客製化:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球光子積體電路(PIC)市場(依產品類型)

  • 收發器
  • 可變光衰減器(VOA)
  • 數據機
  • 感應器
  • 其他產品類型

6. 全球光子積體電路(PIC)市場(按組件)

  • 雷射
  • 數據機
  • 檢測器
  • 多工器/解多工器(MUX/DEMUX)
  • 光放大器
  • 衰減器
  • 波導
  • 其他被動元件

7. 全球光子積體電路(PIC)市場(依整合類型)

  • 單晶片整合
  • 混合整合
  • 模組級整合

8. 全球光子積體電路(PIC)市場(按原始材料)

  • 磷化銦(InP)
  • 絕緣體上矽(SOI)/矽光電
  • 氮化矽(SiN)
  • 砷化鎵(GaAs)
  • 鈮酸鋰(LiNbO3)
  • 其他成分

9. 全球光子積體電路(PIC)市場應用

  • 光纖通訊
    • 資料中心互連 (DCI)
    • 通訊
    • 連貫光收發器
  • 感測
    • 自動駕駛汽車的雷射雷達
    • 光纖感測
    • 生物/化學感
    • 量子感測
  • 訊號處理
    • 光學運算
    • 類比射頻訊號處理
  • 生物醫學
    • 實驗室晶片設備
    • 醫療圖像(OCT)
  • 量子計算
  • 其他應用

10. 全球光子積體電路(PIC)市場(依最終用戶)

  • 電訊和資料通訊
  • IT與資料中心
  • 醫療保健和生命科學
  • 汽車和運輸
  • 航太和國防
  • 家電
  • 工業/製造業
  • 其他最終用戶

11. 全球光子積體電路(PIC)市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章:企業概況

  • Intel Corporation
  • Cisco Systems, Inc.
  • Infinera Corporation
  • Lumentum Holdings Inc.
  • Coherent Corp.
  • Broadcom Inc.
  • MACOM Technology Solutions Holdings, Inc.
  • Ciena Corporation
  • NeoPhotonics Corporation
  • Rockley Photonics Holdings Limited
  • Marvell Technology, Inc.
  • STMicroelectronics NV
  • LIGENTEC SA
  • SMART Photonics BV
  • PHIX Photonics Assembly BV
  • Enablence Technologies Inc.
  • GlobalFoundries Inc.
  • Advanced Micro Devices, Inc.
Product Code: SMRC31529

According to Stratistics MRC, the Global Photonic Integrated Circuits (PIC) Market is accounted for $17.7 billion in 2025 and is expected to reach $61.9 billion by 2032 growing at a CAGR of 19.6% during the forecast period. Photonic Integrated Circuits (PIC) Market focuses on integrating multiple photonic functions, such as lasers, modulators, and detectors, onto a single chip. PICs enable faster data transmission, lower power consumption, and miniaturized optical systems, making them critical for telecommunications, data centers, and sensing applications. Growth is driven by increasing demand for high-speed optical networks, cloud computing, and emerging 5G/6G infrastructure. Advancements in silicon photonics, manufacturing scalability, and government support for next-generation communication technologies are accelerating market adoption globally.

Market Dynamics:

Driver:

Demand for High-Speed Data Transmission

The escalating need for rapid data transfer is a primary driver for the growth of the photonic integrated circuit (PIC) market. Industries such as telecommunications, data centers, and cloud computing require high-speed, low-latency communication systems to handle the increasing volume of data traffic. PICs, leveraging light for data transmission, offer significant advantages over traditional electronic circuits, including higher bandwidth and lower power consumption. This demand is further amplified by the proliferation of 5G networks and the surge in AI applications, necessitating advanced optical interconnects for efficient data processing and communication.

Restraint:

High Manufacturing Costs

The production of photonic integrated circuits involves complex processes and specialized materials, leading to high manufacturing costs. Techniques such as hybrid integration and monolithic integration require precise fabrication methods, which can be capital-intensive. Additionally, the need for cleanroom environments and advanced equipment adds to the overall expenses. These high costs can limit the widespread adoption of PICs, particularly among small and medium-sized enterprises. Furthermore, the lack of standardization in manufacturing processes can lead to inconsistencies and yield issues, further escalating production costs.

Opportunity:

Growth in 5G and Data Centers

The expansion of 5G networks and the increasing demand for data centers present significant opportunities for the photonic integrated circuit market. 5G technology requires high-speed, low-latency communication systems, which can be efficiently achieved using PICs. Similarly, data centers require high-bandwidth interconnects to manage the growing volume of data traffic. PICs offer a solution by enabling faster data transmission with reduced power consumption. The integration of AI and machine learning in data centers further drives the need for advanced optical interconnects, positioning PICs as a critical component in the evolution of telecommunications and data infrastructure.

Threat:

Regulatory Challenges

Stringent regulations concerning environmental impact, material usage, and manufacturing processes can hinder the development and deployment of PICs. Compliance with these regulations often requires significant investment in research and development, as well as modifications to existing manufacturing facilities. Additionally, the lack of standardized regulations across different regions can create barriers to market entry and complicate international trade. These regulatory hurdles can delay the adoption of PICs and increase the overall cost of production.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the photonic integrated circuit market. While it caused challenges such as supply chain disruptions and temporary shutdowns of manufacturing facilities, it also accelerated the demand for digital communication and the adoption of advanced technologies like PICs. The increased reliance on remote work, online services, and digital infrastructure highlighted the need for high-speed, efficient communication systems, thereby driving the growth of the PIC market. As industries adapt to the post-pandemic landscape, the long-term outlook for the PIC market remains positive, supported by ongoing investments in telecommunications infrastructure and digital transformation initiatives.

The transceivers segment is expected to be the largest during the forecast period

The transceivers segment is expected to account for the largest market share during the forecast period. Transceivers, which combine transmitters and receivers in a single module, are essential components in optical communication systems, facilitating high-speed data transmission. The increasing demand for data centers, 5G networks, and AI applications necessitates efficient and high-capacity transceivers. PIC-based transceivers offer advantages such as reduced size, lower power consumption, and improved performance, making them a preferred choice for modern communication systems. This trend is expected to drive the growth of the transceivers segment in the coming years.

The hybrid integration segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hybrid integration segment is predicted to witness the highest growth rate. Hybrid integration involves combining different materials and technologies to create photonic circuits that leverage the strengths of each component. This approach allows for the integration of various functionalities, such as lasers, modulators, and detectors, onto a single chip, enhancing performance and reducing size. The increasing demand for compact, high-performance devices in applications like telecommunications, data centers, and AI systems is driving the adoption of hybrid integration, leading to its projected high CAGR.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. This dominance is attributed to factors such as the presence of major players in the semiconductor and photonics industries, significant investments in research and development, and the rapid adoption of advanced technologies. The region's robust infrastructure, coupled with government initiatives supporting innovation and digital transformation, further contributes to its leading position in the market. Additionally, the increasing demand for high-speed communication systems in sectors like telecommunications, healthcare, and defense bolsters the growth of the PIC market in North America.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This growth is driven by the rapid industrialization and digitalization in countries like China, Japan, and South Korea, leading to increased demand for advanced communication technologies. The region's strong manufacturing capabilities, coupled with government initiatives promoting innovation and technology adoption, create a favorable environment for the growth of the PIC market. Moreover, the rising investments in data centers, 5G infrastructure, and AI research further propel the demand for photonic integrated circuits in the Asia Pacific region.

Key players in the market

Some of the key players in Photonic Integrated Circuits (PIC) Market include Intel Corporation, Cisco Systems, Inc., Infinera Corporation, Lumentum Holdings Inc., Coherent Corp., Broadcom Inc., MACOM Technology Solutions Holdings, Inc., Ciena Corporation, NeoPhotonics Corporation, Rockley Photonics Holdings Limited, Marvell Technology, Inc., STMicroelectronics N.V., LIGENTEC SA, SMART Photonics B.V., PHIX Photonics Assembly B.V., Enablence Technologies Inc., GlobalFoundries Inc., and Advanced Micro Devices, Inc.

Key Developments:

In September 2025, Ciena the global leader in high-speed connectivity announced that it has entered into a definitive agreement to acquire Nubis Communications, a privately-held company headquartered in New Providence, New Jersey. The addition of Nubis, which specializes in high-performance, ultra-compact, low-power optical and electrical interconnects tailored to support AI workloads, will expand Ciena's portfolio and add critical talent to address a wider range of opportunities inside the data center.

In October 2024, The Department of Commerce has provisionally agreed to provide up to $93 million in direct funding to optical networking vendor Infinera. The proposed funding, awarded under the CHIPS and Science Act, would support the construction of a new fab in San Jose, California, and a new advanced test and packaging facility in Bethlehem, Pennsylvania. In a statement, the Department of Commerce said the projects would increase Infinera's existing domestic manufacturing capacity by an estimated factor of 10 and would create up to approximately 500 manufacturing jobs and 1,200 construction jobs across the two states.

In September 2024, Lumentum Holdings Inc. ("Lumentum"), a market-leading designer and manufacturer of innovative optical and photonic products, announced today its participation in the European Conference on Optical Communication (ECOC) 2024 in Frankfurt, Germany, from September 23 - 25. At Stand #A24, Lumentum will showcase its latest photonic solutions, reinforcing its commitment to powering the artificial intelligence (AI) revolution through unparalleled speed, scalability, and energy efficiency.

Product Types Covered:

  • Transceivers
  • Variable Optical Attenuators (VOAs)
  • Modulators
  • Sensors
  • Other Product Types

Components Covered:

  • Lasers
  • Modulators
  • Photodetectors
  • Multiplexers/De-multiplexers (MUX/DEMUX)
  • Optical Amplifiers
  • Attenuators
  • Waveguides
  • Other Passive Components

Integration Types Covered:

  • Monolithic Integration
  • Hybrid Integration
  • Module-Level Integration

Raw Materials Covered:

  • Indium Phosphide (InP)
  • Silicon-on-Insulator (SOI) / Silicon Photonics
  • Silicon Nitride (SiN)
  • Gallium Arsenide (GaAs)
  • Lithium Niobate (LiNbO3)
  • Other Raw Materials

Applications Covered:

  • Optical Communication
  • Sensing
  • Signal Processing
  • Biomedical
  • Quantum Computing
  • Other Applications

End Users Covered:

  • Telecommunications & Data Communication
  • IT & Data Centers
  • Healthcare & Life Sciences
  • Automotive & Transportation
  • Aerospace & Defense
  • Consumer Electronics
  • Industrial & Manufacturing
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Photonic Integrated Circuits (PIC) Market, By Product Type

  • 5.1 Introduction
  • 5.2 Transceivers
  • 5.3 Variable Optical Attenuators (VOAs)
  • 5.4 Modulators
  • 5.5 Sensors
  • 5.6 Other Product Types

6 Global Photonic Integrated Circuits (PIC) Market, By Component

  • 6.1 Introduction
  • 6.2 Lasers
  • 6.3 Modulators
  • 6.4 Photodetectors
  • 6.5 Multiplexers/De-multiplexers (MUX/DEMUX)
  • 6.6 Optical Amplifiers
  • 6.7 Attenuators
  • 6.8 Waveguides
  • 6.9 Other Passive Components

7 Global Photonic Integrated Circuits (PIC) Market, By Integration Type

  • 7.1 Introduction
  • 7.2 Monolithic Integration
  • 7.3 Hybrid Integration
  • 7.4 Module-Level Integration

8 Global Photonic Integrated Circuits (PIC) Market, By Raw Material

  • 8.1 Introduction
  • 8.2 Indium Phosphide (InP)
  • 8.3 Silicon-on-Insulator (SOI) / Silicon Photonics
  • 8.4 Silicon Nitride (SiN)
  • 8.5 Gallium Arsenide (GaAs)
  • 8.6 Lithium Niobate (LiNbO3)
  • 8.7 Other Raw Materials

9 Global Photonic Integrated Circuits (PIC) Market, By Application

  • 9.1 Introduction
  • 9.2 Optical Communication
    • 9.2.1 Data Center Interconnects (DCI)
    • 9.2.2 Telecommunication
    • 9.2.3 Coherent Optical Transceivers
  • 9.3 Sensing
    • 9.3.1 LiDAR for Autonomous Vehicles
    • 9.3.2 Fiber Optic Sensing
    • 9.3.3 Bio/Chemical Sensing
    • 9.3.4 Quantum Sensing
  • 9.4 Signal Processing
    • 9.4.1 Optical Computing
    • 9.4.2 Analog RF Signal Processing
  • 9.5 Biomedical
    • 9.5.1 Lab-on-a-Chip Devices
    • 9.5.2 Medical Imaging (OCT)
  • 9.6 Quantum Computing
  • 9.7 Other Applications

10 Global Photonic Integrated Circuits (PIC) Market, By End User

  • 10.1 Introduction
  • 10.2 Telecommunications & Data Communication
  • 10.3 IT & Data Centers
  • 10.4 Healthcare & Life Sciences
  • 10.5 Automotive & Transportation
  • 10.6 Aerospace & Defense
  • 10.7 Consumer Electronics
  • 10.8 Industrial & Manufacturing
  • 10.9 Other End Users

11 Global Photonic Integrated Circuits (PIC) Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Intel Corporation
  • 13.2 Cisco Systems, Inc.
  • 13.3 Infinera Corporation
  • 13.4 Lumentum Holdings Inc.
  • 13.5 Coherent Corp.
  • 13.6 Broadcom Inc.
  • 13.7 MACOM Technology Solutions Holdings, Inc.
  • 13.8 Ciena Corporation
  • 13.9 NeoPhotonics Corporation
  • 13.10 Rockley Photonics Holdings Limited
  • 13.11 Marvell Technology, Inc.
  • 13.12 STMicroelectronics N.V.
  • 13.13 LIGENTEC SA
  • 13.14 SMART Photonics B.V.
  • 13.15 PHIX Photonics Assembly B.V.
  • 13.16 Enablence Technologies Inc.
  • 13.17 GlobalFoundries Inc.
  • 13.18 Advanced Micro Devices, Inc.

List of Tables

  • Table 1 Global Photonic Integrated Circuits (PIC) Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Photonic Integrated Circuits (PIC) Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Photonic Integrated Circuits (PIC) Market Outlook, By Transceivers (2024-2032) ($MN)
  • Table 4 Global Photonic Integrated Circuits (PIC) Market Outlook, By Variable Optical Attenuators (VOAs) (2024-2032) ($MN)
  • Table 5 Global Photonic Integrated Circuits (PIC) Market Outlook, By Modulators (2024-2032) ($MN)
  • Table 6 Global Photonic Integrated Circuits (PIC) Market Outlook, By Sensors (2024-2032) ($MN)
  • Table 7 Global Photonic Integrated Circuits (PIC) Market Outlook, By Other Product Types (2024-2032) ($MN)
  • Table 8 Global Photonic Integrated Circuits (PIC) Market Outlook, By Component (2024-2032) ($MN)
  • Table 9 Global Photonic Integrated Circuits (PIC) Market Outlook, By Lasers (2024-2032) ($MN)
  • Table 10 Global Photonic Integrated Circuits (PIC) Market Outlook, By Modulators (2024-2032) ($MN)
  • Table 11 Global Photonic Integrated Circuits (PIC) Market Outlook, By Photodetectors (2024-2032) ($MN)
  • Table 12 Global Photonic Integrated Circuits (PIC) Market Outlook, By Multiplexers/De-multiplexers (MUX/DEMUX) (2024-2032) ($MN)
  • Table 13 Global Photonic Integrated Circuits (PIC) Market Outlook, By Optical Amplifiers (2024-2032) ($MN)
  • Table 14 Global Photonic Integrated Circuits (PIC) Market Outlook, By Attenuators (2024-2032) ($MN)
  • Table 15 Global Photonic Integrated Circuits (PIC) Market Outlook, By Waveguides (2024-2032) ($MN)
  • Table 16 Global Photonic Integrated Circuits (PIC) Market Outlook, By Other Passive Components (2024-2032) ($MN)
  • Table 17 Global Photonic Integrated Circuits (PIC) Market Outlook, By Integration Type (2024-2032) ($MN)
  • Table 18 Global Photonic Integrated Circuits (PIC) Market Outlook, By Monolithic Integration (2024-2032) ($MN)
  • Table 19 Global Photonic Integrated Circuits (PIC) Market Outlook, By Hybrid Integration (2024-2032) ($MN)
  • Table 20 Global Photonic Integrated Circuits (PIC) Market Outlook, By Module-Level Integration (2024-2032) ($MN)
  • Table 21 Global Photonic Integrated Circuits (PIC) Market Outlook, By Raw Material (2024-2032) ($MN)
  • Table 22 Global Photonic Integrated Circuits (PIC) Market Outlook, By Indium Phosphide (InP) (2024-2032) ($MN)
  • Table 23 Global Photonic Integrated Circuits (PIC) Market Outlook, By Silicon-on-Insulator (SOI) / Silicon Photonics (2024-2032) ($MN)
  • Table 24 Global Photonic Integrated Circuits (PIC) Market Outlook, By Silicon Nitride (SiN) (2024-2032) ($MN)
  • Table 25 Global Photonic Integrated Circuits (PIC) Market Outlook, By Gallium Arsenide (GaAs) (2024-2032) ($MN)
  • Table 26 Global Photonic Integrated Circuits (PIC) Market Outlook, By Lithium Niobate (LiNbO3) (2024-2032) ($MN)
  • Table 27 Global Photonic Integrated Circuits (PIC) Market Outlook, By Other Raw Materials (2024-2032) ($MN)
  • Table 28 Global Photonic Integrated Circuits (PIC) Market Outlook, By Application (2024-2032) ($MN)
  • Table 29 Global Photonic Integrated Circuits (PIC) Market Outlook, By Optical Communication (2024-2032) ($MN)
  • Table 30 Global Photonic Integrated Circuits (PIC) Market Outlook, By Data Center Interconnects (DCI) (2024-2032) ($MN)
  • Table 31 Global Photonic Integrated Circuits (PIC) Market Outlook, By Telecommunication (2024-2032) ($MN)
  • Table 32 Global Photonic Integrated Circuits (PIC) Market Outlook, By Coherent Optical Transceivers (2024-2032) ($MN)
  • Table 33 Global Photonic Integrated Circuits (PIC) Market Outlook, By Sensing (2024-2032) ($MN)
  • Table 34 Global Photonic Integrated Circuits (PIC) Market Outlook, By LiDAR for Autonomous Vehicles (2024-2032) ($MN)
  • Table 35 Global Photonic Integrated Circuits (PIC) Market Outlook, By Fiber Optic Sensing (2024-2032) ($MN)
  • Table 36 Global Photonic Integrated Circuits (PIC) Market Outlook, By Bio/Chemical Sensing (2024-2032) ($MN)
  • Table 37 Global Photonic Integrated Circuits (PIC) Market Outlook, By Quantum Sensing (2024-2032) ($MN)
  • Table 38 Global Photonic Integrated Circuits (PIC) Market Outlook, By Signal Processing (2024-2032) ($MN)
  • Table 39 Global Photonic Integrated Circuits (PIC) Market Outlook, By Optical Computing (2024-2032) ($MN)
  • Table 40 Global Photonic Integrated Circuits (PIC) Market Outlook, By Analog RF Signal Processing (2024-2032) ($MN)
  • Table 41 Global Photonic Integrated Circuits (PIC) Market Outlook, By Biomedical (2024-2032) ($MN)
  • Table 42 Global Photonic Integrated Circuits (PIC) Market Outlook, By Lab-on-a-Chip Devices (2024-2032) ($MN)
  • Table 43 Global Photonic Integrated Circuits (PIC) Market Outlook, By Medical Imaging (OCT) (2024-2032) ($MN)
  • Table 44 Global Photonic Integrated Circuits (PIC) Market Outlook, By Quantum Computing (2024-2032) ($MN)
  • Table 45 Global Photonic Integrated Circuits (PIC) Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 46 Global Photonic Integrated Circuits (PIC) Market Outlook, By End User (2024-2032) ($MN)
  • Table 47 Global Photonic Integrated Circuits (PIC) Market Outlook, By Telecommunications & Data Communication (2024-2032) ($MN)
  • Table 48 Global Photonic Integrated Circuits (PIC) Market Outlook, By IT & Data Centers (2024-2032) ($MN)
  • Table 49 Global Photonic Integrated Circuits (PIC) Market Outlook, By Healthcare & Life Sciences (2024-2032) ($MN)
  • Table 50 Global Photonic Integrated Circuits (PIC) Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 51 Global Photonic Integrated Circuits (PIC) Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 52 Global Photonic Integrated Circuits (PIC) Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 53 Global Photonic Integrated Circuits (PIC) Market Outlook, By Industrial & Manufacturing (2024-2032) ($MN)
  • Table 54 Global Photonic Integrated Circuits (PIC) Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.