封面
市場調查報告書
商品編碼
1871109

用於雷射雷達的光子積體電路市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Photonic Integrated Circuits for LiDAR Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 190 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球雷射雷達用光子積體電路市場價值為 1.61 億美元,預計到 2034 年將以 25.3% 的複合年成長率成長至 18.9 億美元。

用於雷射雷達市場的光子積體電路 - IMG1

對自動駕駛需求的不斷成長、LiDAR組件的小型化、5G的部署以及成本的顯著降低,正在推動雷射雷達技術的廣泛應用。雷射和光學技術的創新也為該行業帶來了顯著的成長。矽光子學的進步正推動LiDAR系統朝更快、更緊湊、更有效率的方向發展。將光子組件整合到矽晶片上,可實現高速資料傳輸和增強訊號處理,這對於車輛自動駕駛、智慧城市和下一代電信基礎設施等應用至關重要。更高的頻寬和成本效益正在為資料中心和智慧交通系統等領域開闢新的應用場景。這些發展正在改變全球光子系統的建構和應用方式。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 1.61億美元
預測值 18.9億美元
複合年成長率 25.3%

預計到2024年,矽光子平台市場規模將達到1.093億美元。其成長主要得益於對緊湊型裝置、高速光傳輸和可擴展製造流程日益成長的需求。整合光路和成本效益型生產的發展趨勢也將持續影響該市場。建議企業專注於改進矽光子技術,以實現即時資料傳輸和可擴展解決方案,從而滿足電信和汽車行業的需求。

2024年,調頻連續波(FMCW)系統市場規模達6,250萬美元。其成長源自於市場對高解析度、遠距離檢測的先進汽車感測系統的需求不斷成長。這些系統節能高效,能夠實現精確測量,因此對於自動駕駛和安全關鍵型應用等新興領域至關重要。優先投資於設計緊湊、傳輸距離更遠、精度更高的下一代FMCW系統,將有助於製造商獲得競爭優勢。

預計到2024年,美國用於雷射雷達的光子積體電路市場規模將達到5,830萬美元。該地區市場強勁的成長得益於自動駕駛汽車的日益普及、智慧基礎設施的進步、資料中心需求的不斷成長以及領先半導體公司的支持。美國在光子和LiDAR技術整合方面的創新持續領先。建議旨在擴大業務規模的製造商加快晶片級整合、資料中心連接和智慧出行應用方面的研究,以保持其在北美市場的領先地位。

推動雷射雷達光子積體電路市場發展的關鍵企業包括英特爾公司、Ayar Labs、Scintil Photonics、台積電、VLC Photonics(日立高新科技公司)、IBM、GlobalFoundries、AMS(歐司朗)、Infinera Corporation、義法半導體、Rockley Photonics、思科系統(歐司朗)、Infinera 公司、義法半導體、Rockley Photogenenics、思科系統(OYcacia)、YYAjia、SiYAicon、SOYY 最後​​) Technologies、LIGENTEC、LightIC Technologies、Effect Photonics、濱松光子學和Coherent Corporation。這些企業在雷射雷達光子積體電路市場採取的關鍵策略包括與汽車OEM廠商和電信業領導者建立策略聯盟,以推動大規模應用。許多企業正大力投資研發,以加速開發緊湊型低成本矽光子平台和下一代基於FMCW的雷射雷達解決方案。在確保與半導體製造流程相容的同時擴大生產能力是重中之重。

目錄

第1章:方法論與範圍

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率
    • 成本結構
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 成長促進因素
      • 自動駕駛汽車的需求日益成長
      • 雷射技術的進步
      • 5G網路的引進
      • LiDAR系統的小型化
      • 降低LiDAR製造成本
    • 陷阱與挑戰
      • LiDAR系統的初始成本很高
      • 與現有基礎設施整合的複雜性
    • 市場機遇
      • 固態LiDAR技術的進步
      • 與人工智慧 (AI) 和機器學習的整合
  • 成長潛力分析
  • 監管環境
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • PESTEL 分析
  • 技術與創新格局
    • 當前技術趨勢
    • 新興技術
  • 價格趨勢
    • 按地區
    • 依產品
  • 定價策略
  • 新興商業模式
  • 合規要求
  • 永續性措施
  • 消費者情緒分析
  • 專利和智慧財產權分析
  • 地緣政治與貿易動態

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 按地區
      • 北美洲
      • 歐洲
      • 亞太地區
      • 拉丁美洲
      • 中東和非洲
    • 市場集中度分析
  • 對主要參與者進行競爭基準分析
    • 財務績效比較
      • 收入
      • 利潤率
      • 研發
    • 產品組合比較
      • 產品範圍廣度
      • 科技
      • 創新
    • 地理位置比較
      • 全球足跡分析
      • 服務網路覆蓋
      • 按地區分類的市場滲透率
    • 競爭定位矩陣
      • 領導人
      • 挑戰者
      • 追蹤者
      • 小眾玩家
    • 戰略展望矩陣
  • 2021-2024 年主要發展動態
    • 併購
    • 夥伴關係與合作
    • 技術進步
    • 擴張和投資策略
    • 永續發展舉措
    • 數位轉型計劃
  • 新興/新創企業競爭對手格局

第5章:市場估計與預測:依技術平台分類,2021-2034年

  • 主要趨勢
  • 矽光子學(Si/SOI)平台
  • 矽基氮化矽(sin-on-soi)平台
  • 磷化銦(INP)平台
  • 絕緣體上鈮酸鋰(LNOI)平台
  • 砷化鎵(GaAs)平台

第6章:市場估算與預測:以LiDAR偵測方法分類,2021-2034年

  • 主要趨勢
  • 調頻連續波(FMCW)系統
  • 飛行時間(TOF)系統
  • 整合路徑差分吸收(IPDA)系統
  • 混合式飛行時間/調頻微波系統

第7章:市場估算與預測:依波束控制技術分類,2021-2034年

  • 主要趨勢
  • 光學相控陣(OPAS)
  • 焦平面陣列(FPAS)
  • MEMS整合轉向
  • 電光光束控制
  • 固定光束/無轉向應用

第8章:市場估算與預測:依波長分類,2021-2034年

  • 主要趨勢
  • 905nm波段系統
  • 1310nm波段系統
  • 1550nm波段系統
  • 其他波長

第9章:市場估算與預測:以一體化程度分類,2021-2034年

  • 主要趨勢
  • 晶片級整合
  • 多晶片模組整合
  • 混合裝配整合

第10章:市場估計與預測:依應用領域分類,2021-2034年

  • 主要趨勢
  • 進階駕駛輔助系統與自動駕駛應用
  • 工業自動化與機器人應用
  • 監控與安全應用
  • 消費性電子產品整合應用
  • 環境監測應用

第11章:市場估計與預測:依最終用途產業分類,2021-2034年

  • 主要趨勢
  • 汽車產業
  • 航太與國防工業
  • 工業製造業
  • 消費性電子產業
  • 科學研究機構

第12章:市場估計與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第13章:公司簡介

  • 全球關鍵參與者
    • Coherent Corporation
    • Intel Corporation
    • GlobalFoundries
    • TSMC
    • STMicroelectronics
  • 區域關鍵參與者
    • 北美洲
      • SiLC Technologies
      • Rockley Photonics
      • Ayar Labs
      • Infinera Corporation
      • Cisco Systems (Acacia)
    • 歐洲
      • LightIC Technologies
      • LIGENTEC
      • X-FAB Silicon Foundries
      • AMS (Osram)
      • VLC Photonics (Hitachi High-Tech)
    • Asia-Pacific
      • Hamamatsu Photonics
      • Scintil Photonics
      • Tower Semiconductor
      • IBM
  • 顛覆者/小眾玩家
    • Effect Photonics
簡介目錄
Product Code: 14970

The Global Photonic Integrated Circuits for LiDAR Market was valued at USD 161 million in 2024 and is estimated to grow at a CAGR of 25.3% to reach USD 1.89 Billion by 2034.

Photonic Integrated Circuits for LiDAR Market - IMG1

Rising demand for autonomous mobility, the miniaturization of LiDAR components, the rollout of 5G, and significant cost reductions are fueling widespread adoption. The industry is also experiencing notable traction due to innovations in laser and optical technologies. Progress in silicon photonics is driving a shift toward faster, compact, and more efficient LiDAR systems. Integration of photonic components onto silicon chips allows for high-speed data transmission and enhanced signal processing, critical features in applications such as vehicle autonomy, smart cities, and next-gen telecommunications infrastructure. Enhanced bandwidth and cost-effectiveness are unlocking new use cases across sectors like data centers and intelligent transportation systems. These developments are transforming how photonic systems are built and applied globally.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$161 Million
Forecast Value$1.89 Billion
CAGR25.3%

The silicon photonics platform segment generated USD 109.3 million in 2024. Its growth is driven by an increased need for compact form factors, high-speed optical transmission, and scalable manufacturing processes. Trends in integrated optical circuits and cost-efficient production continue to influence this segment. Companies are advised to focus on refining silicon photonics for real-time data transmission and scalable solutions to meet telecom and automotive sector demands.

In 2024, the frequency-modulated continuous wave (FMCW) systems segment generated USD 62.5 million. Its growth stems from rising demand for advanced automotive sensing systems offering high resolution and long-range detection. These systems are energy-efficient and enable precise measurements, making them vital for evolving applications in autonomous driving and safety-critical use cases. Prioritizing investment in next-gen FMCW systems that offer compact design, longer range, and enhanced accuracy will help manufacturers secure a competitive edge.

United States Photonic Integrated Circuits for LiDAR Market reached USD 58.3 million in 2024. The region's stronghold is fueled by growing adoption of autonomous vehicles, advances in smart infrastructure, rising data center requirements, and support from leading semiconductor companies. The country continues to lead in innovation surrounding photonic and LiDAR technology integration. Manufacturers aiming to scale operations are recommended to accelerate research in chip-level integration, data center connectivity, and smart mobility applications to sustain their lead in the North America market.

Notable players shaping Photonic Integrated Circuits for LiDAR Market include Intel Corporation, Ayar Labs, Scintil Photonics, TSMC, VLC Photonics (Hitachi High-Tech), IBM, GlobalFoundries, AMS (Osram), Infinera Corporation, STMicroelectronics, Rockley Photonics, Cisco Systems (Acacia), X-FAB Silicon Foundries, Tower Semiconductor, SiLC Technologies, LIGENTEC, LightIC Technologies, Effect Photonics, Hamamatsu Photonics, and Coherent Corporation. Key strategies adopted by companies in the Photonic Integrated Circuits for LiDAR Market include forming strategic alliances with automotive OEMs and telecom leaders to drive adoption at scale. Many are heavily investing in R&D to accelerate the development of compact and low-cost silicon photonics platforms and next-generation FMCW-based LiDAR solutions. Scaling production capabilities while ensuring compatibility with semiconductor fabrication processes is a priority.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Technology platform trend
    • 2.2.2 Lidar detection method trends
    • 2.2.3 Beam steering technology trends
    • 2.2.4 Wavelength trends
    • 2.2.5 Integration level trends
    • 2.2.6 Application trends
    • 2.2.7 End Use industry trends
    • 2.2.8 Regional trends
  • 2.3 TAM Analysis, 2025-2034 (USD Billion)
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing demand for autonomous vehicles
      • 3.2.1.2 Advancements in laser technology
      • 3.2.1.3 Introduction of 5g network
      • 3.2.1.4 Miniaturization of lidar systems
      • 3.2.1.5 Cost reduction in lidar manufacturing
    • 3.2.2 Pitfalls and challenges
      • 3.2.2.1 High initial cost of lidar systems
      • 3.2.2.2 Complexity in integration with existing infrastructure
    • 3.2.3 Market Opportunities
      • 3.2.3.1 Advancements in solid-state lidar technology
      • 3.2.3.2 Integration with artificial intelligence (AI) and machine learning
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Pricing Strategies
  • 3.10 Emerging business models
  • 3.11 Compliance requirements
  • 3.12 Sustainability measures
  • 3.13 Consumer sentiment analysis
  • 3.14 Patent and IP analysis
  • 3.15 Geopolitical and trade dynamics

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 Latin America
      • 4.2.1.5 Middle East & Africa
    • 4.2.2 Market concentration analysis
  • 4.3 Competitive benchmarking of key players
    • 4.3.1 Financial performance comparison
      • 4.3.1.1 Revenue
      • 4.3.1.2 Profit margin
      • 4.3.1.3 R&D
    • 4.3.2 Product portfolio comparison
      • 4.3.2.1 Product range breadth
      • 4.3.2.2 Technology
      • 4.3.2.3 Innovation
    • 4.3.3 Geographic presence comparison
      • 4.3.3.1 Global footprint analysis
      • 4.3.3.2 Service network coverage
      • 4.3.3.3 Market penetration by region
    • 4.3.4 Competitive positioning matrix
      • 4.3.4.1 Leaders
      • 4.3.4.2 Challengers
      • 4.3.4.3 Followers
      • 4.3.4.4 Niche players
    • 4.3.5 Strategic outlook matrix
  • 4.4 Key developments, 2021-2024
    • 4.4.1 Mergers and acquisitions
    • 4.4.2 Partnerships and collaborations
    • 4.4.3 Technological advancements
    • 4.4.4 Expansion and investment strategies
    • 4.4.5 Sustainability initiatives
    • 4.4.6 Digital transformation initiatives
  • 4.5 Emerging/ startup competitors landscape

Chapter 5 Market Estimates and Forecast, By Technology Platform, 2021 - 2034 (USD Million & Thousand Units)

  • 5.1 Key trends
  • 5.2 Silicon photonics (si/soi) platform
  • 5.3 Silicon nitride on silicon (sin-on-soi) platform
  • 5.4 Indium phosphide (inp) platform
  • 5.5 Lithium niobate on insulator (lnoi) platform
  • 5.6 Gallium arsenide (gaas) platform

Chapter 6 Market Estimates and Forecast, By Lidar Detection Method, 2021 - 2034 (USD Million & Thousand Units)

  • 6.1 Key trends
  • 6.2 Frequency-modulated continuous wave (fmcw) systems
  • 6.3 Time-of-flight (tof) systems
  • 6.4 Integrated path differential absorption (ipda) systems
  • 6.5 Hybrid tof/fmcw systems

Chapter 7 Market Estimates and Forecast, By Beam Steering Technology, 2021 - 2034 (USD Million & Thousand Units)

  • 7.1 Key trends
  • 7.2 Optical phased arrays (opas)
  • 7.3 Focal plane arrays (fpas)
  • 7.4 Mems-integrated steering
  • 7.5 Electro-optic beam steering
  • 7.6 Fixed beam/no steering applications

Chapter 8 Market Estimates and Forecast, By Wavelength, 2021 - 2034 (USD Million & Thousand Units)

  • 8.1 Key trends
  • 8.2 905nm band systems
  • 8.3 1310nm band systems
  • 8.4 1550nm band systems
  • 8.5 Other wavelengths

Chapter 9 Market Estimates and Forecast, By Integration Level, 2021 - 2034 (USD Million & Thousand Units)

  • 9.1 Key trends
  • 9.2 Chip-scale integration
  • 9.3 Multi-chip module integration
  • 9.4 Hybrid assembly integration

Chapter 10 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Million & Thousand Units)

  • 10.1 Key trends
  • 10.2 Adas & autonomous driving applications
  • 10.3 Industrial automation & robotics applications
  • 10.4 Surveillance & security applications
  • 10.5 Consumer electronics integration applications
  • 10.6 Environmental monitoring applications

Chapter 11 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 (USD Million & Thousand Units)

  • 11.1 Key trends
  • 11.2 Automotive industry
  • 11.3 Aerospace & defense industry
  • 11.4 Industrial manufacturing industry
  • 11.5 Consumer electronics industry
  • 11.6 Scientific & research institutions

Chapter 12 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million & Thousand Units)

  • 12.1 Key trends
  • 12.2 North America
    • 12.2.1 U.S.
    • 12.2.2 Canada
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 Uk
    • 12.3.3 France
    • 12.3.4 Spain
    • 12.3.5 Italy
    • 12.3.6 Netherlands
  • 12.4 Asia Pacific
    • 12.4.1 China
    • 12.4.2 India
    • 12.4.3 Japan
    • 12.4.4 Australia
    • 12.4.5 South Korea
  • 12.5 Latin America
    • 12.5.1 Brazil
    • 12.5.2 Mexico
    • 12.5.3 Argentina
  • 12.6 Middle East and Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 South Africa
    • 12.6.3 UAE

Chapter 13 Company Profiles

  • 13.1 Global Key Players
    • 13.1.1 Coherent Corporation
    • 13.1.2 Intel Corporation
    • 13.1.3 GlobalFoundries
    • 13.1.4 TSMC
    • 13.1.5 STMicroelectronics
  • 13.2 Regional Key Players
    • 13.2.1 North America
      • 13.2.1.1 SiLC Technologies
      • 13.2.1.2 Rockley Photonics
      • 13.2.1.3 Ayar Labs
      • 13.2.1.4 Infinera Corporation
      • 13.2.1.5 Cisco Systems (Acacia)
    • 13.2.2 Europe
      • 13.2.2.1 LightIC Technologies
      • 13.2.2.2 LIGENTEC
      • 13.2.2.3 X-FAB Silicon Foundries
      • 13.2.2.4 AMS (Osram)
      • 13.2.2.5 VLC Photonics (Hitachi High-Tech)
    • 13.2.3 Asia-Pacific
      • 13.2.3.1 Hamamatsu Photonics
      • 13.2.3.2 Scintil Photonics
      • 13.2.3.3 Tower Semiconductor
      • 13.2.3.4 IBM
  • 13.3 Disruptors / Niche Players
    • 13.3.1 Effect Photonics