光子量子電腦市場
市場調查報告書
商品編碼
1767025

光子量子電腦市場

Markets for Photonic Quantum Computers

出版日期: | 出版商: Inside Quantum Technology | 英文 58 Pages | 訂單完成後即時交付

價格
簡介目錄

光子量子電腦正快速崛起,成為一個可行的量子運算平台,其驅動力源自於人們堅信它們能夠在(1)室溫下進行運算,並且可以使用(2)電信業現成的光網路元件以低成本建構。本報告的主要目標是分析、量化和預測以光子學為主要架構的量子電腦的商業潛力。到2030年,全球光子量子電腦市場預計將達到11億美元,到2035年將成長到68億美元以上。在供應方面,新的參與者將進入光子計算機市場。在需求方面,量子電腦的整體需求將大幅成長,這種高成長將對光子量子運算產生影響。

目前,已有20家供應商將全端光子量子電腦商業化,其中PsiQuantum迄今籌集的資金最多,Xanadu也引起了廣泛關注。本報告分析了所有全端光子電腦製造商的產品和市場策略,包括北京博色量子科技、Mitre Corporation、NTT、ORCA、Photonic、Quickly Quantum、PsiQuantum、Q.Ant、QC82、Quandela、Quanfluence、Quantum Computing, Inc、Quantum Source Labs、QuiX、Quantur、QuiX、Quant、Tumium、Quantraium、QuiXdux、Stium X

本報告概述了新興光子量子系統領域的元件、PIC 和軟體供應商,並對光子電腦市場進行了 10 年預測。預測以單位數和價值形式提供,涵蓋三個細分市場:實用級、高效能運算/企業級和其他。報告也專門有一章探討了光子量子電腦的應用,重點介紹了光子電腦尤其受青睞的領域。

目錄

第1章 光子量子電腦:產品和產業的背景

  • 報告書的背景
  • 光子量子電腦的優點
  • 光子量子電腦的課題
  • 光子量子電腦的種類
  • 光子量子電腦晶片和晶片組
    • 研究機關及大學
    • 商業供應商
  • 零組件和子系統
    • 雷射和光源
    • 頻率com
    • 光子檢測器
    • 控制晶片
    • SDK
  • 光子量子電腦(QC)的新的架構
    • CV架構
    • T中心的架構
  • 價值量子運算品牌社群:光子量子運算的適用性
    • Quandela Cloud
    • Xanadu
  • 光子量子計算機產業結構
    • 俄羅斯和中國
  • 新的chapter

第2章 光子量子電腦和相關產品

  • Bose Quantum Technology/QBoson(中國)
    • 目前產品
    • 基本客群與市場
  • Electronics and Telecommunications Research Institute(ETRI)(韓國)
  • InfamousPlatypus(美國)
    • 基本客群與競爭
  • MITRE Corporation/CVE(美國)
    • 量子登月計劃
    • 基本客群
  • NTT(日本)
    • 目前調查
  • ORCA Computing(英國)
    • PT 系列產品
    • COTS 使用
    • ORCA 客戶:HPC 使用
  • Photonic(加拿大)
    • 產品和技術的演進
    • 基本客群與競爭
  • PsiQuantum(美國)
    • 技術的演進
    • 基本客群與競爭
  • Q.Ant(德國)
  • QC82(美國)
    • 公司目標
    • 被估計的基本客群
  • Quandela
    • 科技和生產
    • kuanderakuraudo
    • 基本客群與競爭
  • Quanfluence(印度)
  • Quantum Computing, Inc.(美國)
    • 目前產品和服務
    • 基本客群與競爭
  • Quantum Source Labs(以色列)
    • 電腦策略
    • 基本客群
  • QuiX Quantum(荷蘭)
    • 目前產品
    • 客戶
  • Rotonium(義大利)
    • 調查與產品開發的方向性
    • 製造業
    • 潛在的基本客群
  • Spooky Manufacturing(美國)
  • TundraSystems Global LTD(英國)
  • TuringQ(中國)
    • 量子電腦的提供和生產
    • 基本客群
  • Xanadu Quantum Technologies(加拿大)
    • 產品和科技
    • 製造業
    • 客戶和合作夥伴
    • Xanadu Cloud雲端的興亡
  • 零組件
    • ID Quantique(瑞士)
    • M-Labs(中國)
    • Menlo Systems(德國)
    • Nanofiber Quantum Technologies(日本)
    • Nexus Photonics(美國)
    • Nicslab(美國)
    • Sparrow Quantum(丹麥)
    • Toptica Photonics(德國)
    • Toshiba(日本)
    • Vescent(美國)
  • 服務
    • Iceberg Quantum(澳洲)
  • 軟體
    • QC Design(德國)
    • QMware(瑞士)
  • 平台
    • qBraid(美國)
  • 研究機關和大學
    • Centre for Quantum Computation and Communication Technology(CQC2T)(澳洲)
    • Griffith University(澳洲)
    • Harvard University(美國)
    • Institute for Photonic Quantum Systems(PhoQC)(德國)
    • Israeli Quantum Computing Center (IQCC)(以色列)
    • 南京市 University(中國)
    • National Quantum Computing Center(NQCC)(英國)
    • National Quantum Laboratory(NQL)(俄羅斯)
    • Niels Bohr Institute(NBI)(丹麥)
    • Poznan Supercomputing and Networking Center ((PSNC)
    • Queensland University of Technology(QUT)(澳洲)
    • RIKEN(日本)
    • Russian Quantum Center(俄羅斯)
    • Sandia National Laboratory (美國)
    • Simon Fraser University(加拿大)
    • University of Arizona(美國)
    • University of Bristol (英國)
    • University of New Mexico(美國)
    • University of Queensland(澳洲)
    • University of Science & Technology of China(USTC)
    • University of Southern Queensland (UniSQ)(澳洲)
    • University of the Sunshine Coast(澳洲)
    • University of Virginia(UVA)(美國)
    • University of Washington(UW)(美國)
    • University of Waterloo(加拿大)

第3章 光子量子電腦的標的用途

  • 研究設備和研究室
  • 量化學和材料科學
  • 金融和銀行
  • 軍事,諜報,航太
  • 汽車·運輸
  • 能源產業
  • 光子電腦:特定的適合場所的設計
    • 光子電腦和HPC:量子超級電腦
    • 資料中心規模的光子量子電腦
    • 機架式型光子電腦
    • 光量孩子邊緣運算
  • 量子+AI

第4章 光子量子電腦的10年預測

  • 調查手法
  • 出貨預測
    • 初期出貨
    • 今後5年的成長
  • 各產品類型出貨
  • 替代Scenario
  • 關於分析師
簡介目錄
Product Code: IQT-PHOTONIC2025-0725

Photonic Quantum Computers are quickly emerging as a viable quantum computing platform driven by the belief that they can (1) compute at room temperatures and (2) can be built at low cost using off-the-shelf optical networking components intended for the telecom industry. Our primary goal in this report is to analyze and quantify the commercial potential of quantum computers using photonics for their main fabric and to forecast their sales. We show how by 2030, worldwide revenues from photonic quantum computers will have reached US$1.1 billions shipped but this number will grow to more than US$6.8 billions by 2035. On the supply side new firms will be entering the photonic computer market. On the demand side, the demand for quantum computers as a whole will increase dramatically, and this high growth will impact photonic QCs.

There are already around 20 vendors commercializing full stack photonic quantum at the present time with PsiQuantum having attracted the largest funding to date and Xanadu attracting considerable attention too. This report, analyzes the product/market strategies of all the manufacturers of full-stack photonic computers including Beijing Bose Quantum, Technology, Mitre Corporation, NTT, ORCA, Photonic, Quickly Quantum, PsiQuantum, Q.Ant,QC82, Quandela, Quanfluence, Quantum Computing, Inc., Quantum Source Labs, QuiXQuantum, Rotonium, Tundra Systems, Turing and Xanadu Quantum Technologies.

In this report we also profile the relevant component, PIC and software suppliers to the budding photonic quantum systems sector as well as including ten-year forecasts of photonic computer markets. The forecasts are broken out by three types of machines "Utility-Class," "HPC/enterprise" machines and "Other" forecasts are provided in both volume and value terms. We also include a Chapter on applications for photonic quantum computers, noting where photonic where photonic machines are especially favored.

Table of Contents

Chapter One: Photonic Quantum Computers: Products and Industry Background

  • 1.1. Background to Report
  • 1.2. Advantages of Photonic Quantum Computers
  • 1.3. Challenges of Photonic Quantum Computers
  • 1.4. Types of Photonic Quantum Computers
  • 1.5. Chips and Chipsets for Photonic Quantum Computers
    • 1.5.1. Research Institutes and Universities
    • 1.5.2. Commercial Suppliers
  • 1.6. Components and Subsystems
    • 1.6.1. Lasers and Light Sources
    • 1.6.2. Frequency Combs
    • 1.6.3. Photon Detectors
    • 1.6.4. Control Chips
    • 1.6.5. SDKs
  • 1.7. Novel Architectures for Photonic QCs
    • 1.7.1. CV Architectures
    • 1.7.2. T Centre architecture
  • 1.8. The Value QC Brand Communities: Applicability to Photonic QCs
    • 1.8.1. Quandela Cloud
    • 1.8.2. Xanadu
  • 1.9. Photonic Quantum Computer Industry Structure
    • 1.9.1. Russia and China
  • 1.10. The Next Chapter

Chapter Two: Photonic Quantum Computers and Related Products

  • 2.1. Bose Quantum Technology/QBoson (China)
    • 2.1.1. Current Products
    • 2.1.2. Customer Base and Markets
  • 2.2. Electronics and Telecommunications Research Institute (ETRI) (Korea)
  • 2.3. InfamousPlatypus (United States)
    • 2.3.1. Customer Base and Competition
  • 2.4. MITRE Corporation/CVE (United States)
    • 2.4.1. Quantum Moonshot
    • 2.4.2. Customer Base
  • 2.5. NTT (Japan)
    • 2.5.1. Current Research
  • 2.6. ORCA Computing (United Kingdom)
    • 2.6.1. PT Series Products
    • 2.6.2. Use of COTS
    • 2.6.3. ORCA Customers: Use with HPC
  • 2.7. Photonic (Canada)
    • 2.7.1. Product and Technology Evolution
    • 2.7.2. Customer Base and Competition
  • 2.8. PsiQuantum (United States)
    • 2.8.1. Technical Evolution
    • 2.8.2. Customer Base and Competition
  • 2.9. Q.Ant (Germany)
  • 2.10. QC82 (United States)
    • 2.10.1. Goals of Company
    • 2.10.2. Expected Customer Base
  • 2.11. Quandela
    • 2.11.1. Technology and Manufacturing
    • 2.11.2. Quandela Cloud
    • 2.11.3. Customer Base and Competition
  • 2.12. Quanfluence (India)
  • 2.13. Quantum Computing, Inc. United States)
    • 2.13.1. Current Products and Services
    • 2.13.2. Customer Base and Competition
  • 2.14. Quantum Source Labs (Israel)
    • 2.14.1. Computer Strategy
    • 2.14.2. Customer Base
  • 2.15. QuiX Quantum (The Netherlands)
    • 2.15.1. Current Products
    • 2.15.2. Customers
  • 2.16. Rotonium (Italy)
    • 2.16.1. Direction of Research and Product Development
    • 2.16.2. Manufacturing
    • 2.16.3. Possible Customer Base
  • 2.17. Spooky Manufacturing (United States)
  • 2.18. TundraSystems Global LTD (United Kingdom)
  • 2.19. TuringQ (China)
    • 2.19.1. Quantum Computer Offerings and Manufacturing
    • 2.19.2. Customer Base
  • 2.20. Xanadu Quantum Technologies (Canada)
    • 2.20.1. Products and Technology
    • 2.20.2. Manufacturing
    • 2.20.3. Customers and Partners
    • 2.20.4. The Rise and Fall of Xanadu Cloud
  • 2.21. Components
    • 2.21.1. ID Quantique (Switzerland)
    • 2.21.2. M-Labs (China)
    • 2.21.3. Menlo Systems (Germany)
    • 2.21.4. Nanofiber Quantum Technologies (Japan)
    • 2.21.5. Nexus Photonics (United States)
    • 2.21.6. Nicslab (United States)
    • 2.21.7. Sparrow Quantum (Denmark)
    • 2.21.8. Toptica Photonics (Germany)
    • 2.21.9. Toshiba (Japan)
    • 2.21.10. Vescent (United States)
  • 2.22. Services
    • 2.22.1. Iceberg Quantum (Australia)
  • 2.23. Software
    • 2.23.1. QC Design (Germany)
    • 2.23.2. QMware (Switzerland)
  • 2.24. Platforms
    • 2.24.1. qBraid (United States)
  • 2.25. Research and Universities
    • 2.25.1. Centre for Quantum Computation and Communication Technology (CQC2T) (Australia)
    • 2.25.2. Griffith University (Australia)
    • 2.25.3. Harvard University ( United States)
    • 2.25.4. Institute for Photonic Quantum Systems (PhoQC) (Germany)
    • 2.25.5. Israeli Quantum Computing Center (IQCC) (Israel)
    • 2.25.6. Nanjing University (China)
    • 2.25.7. National Quantum Computing Center (NQCC) (United Kingdom)
    • 2.25.8. National Quantum Laboratory (NQL) (Russia)
    • 2.25.9. Niels Bohr Institute (NBI) (Denmark)
    • 2.25.10. Poznan Supercomputing and Networking Center (PSNC)
    • 2.25.11. Queensland University of Technology (QUT) (Australia)
    • 2.25.12. RIKEN (Japan)
    • 2.25.13. Russian Quantum Center (Russia)
    • 2.25.14. Sandia National Laboratory (United States)
    • 2.25.15. Simon Fraser University (Canada)
    • 2.25.16. University of Arizona (United States)
    • 2.25.17. University of Bristol (United Kingdom)
    • 2.25.18. University of New Mexico (United States)
    • 2.25.19. University of Queensland (Australia)
    • 2.25.20. University of Science & Technology of China (USTC)
    • 2.25.21. University of Southern Queensland (UniSQ) (Australia)
    • 2.25.22. University of the Sunshine Coast (Australia)
    • 2.25.23. University of Virginia (UVA) (United States)
    • 2.25.24. University of Washington (UW) (United States)
    • 2.25.25. University of Waterloo (Canada)

Chapter Three: Target Applications for Photonic Quantum Computers

  • 3.1. Research Machines and Laboratories
  • 3.2. Quantum Chemistry and Materials Science
  • 3.3. Finance and Banking
  • 3.4. Military, Intelligence and Aerospace
  • 3.5. Automotive and Transportation
  • 3.6. The Energy Industry
  • 3.7. Photonic Computers: Design for Specific Locations
    • 3.7.1. Photonic Computers and HPC: The Quantum Supercomputer
    • 3.7.2. Data Center Scale Photonic Quantum Computers
    • 3.7.3. Rack-Mounted Photonic Computers
    • 3.7.4. Photonic Quantum Edge Computing
  • 3.8. Quantum + AI

Chapter Four: Ten-year Forecasts of Photonic Quantum Computers

  • 4.1. Methodology
  • 4.2. Shipment Forecast
    • 4.2.1. Initial Shipments
    • 4.2.2. Growth Over the Next Five Years
  • 4.3. Shipments by Product Type
  • 4.4. Alternative Scenarios
  • About the Analyst

List of Exhibits

  • Exhibit 4-1: Shipments of QCs vs. Photonic QCs
  • Exhibit 4-2: Worldwide Shipments of Photonic QCs by Type