封面
市場調查報告書
商品編碼
1922728

日本光子積體電路市場規模、佔有率、趨勢和預測:按組件、原料、整合度、應用和地區分類,2026-2034年

Japan Photonic Integrated Circuit Market Size, Share, Trends and Forecast by Component, Raw Material, Integration, Application, and Region, 2026-2034

出版日期: | 出版商: IMARC | 英文 121 Pages | 商品交期: 5-7個工作天內

價格
簡介目錄

2025年,日本光子積體電路市場規模達9.401億美元。展望未來,IMARC Group預測,到2034年,該市場規模將達到38.475億美元,2026年至2034年的複合年成長率(CAGR)為16.95%。該市場正經歷強勁成長,主要得益於對高速資料傳輸需求的不斷成長,尤其是在5G網路預期擴展和向6G網路遷移的背景下;此外,日本強大的半導體製造生態系統以及光電與量子運算和人工智慧等新興技術的日益融合也是推動市場成長的重要因素。

日本光子積體電路市場的發展趨勢:

高速數據基礎設施的擴展

日本強勁的數位轉型(DX)推動了電信和資料中心基礎設施的大量投資,顯著促進了光子積體電路(PIC)的普及應用,而光子積體電路對於高速、低延遲的資料傳輸至關重要。預計到2024年,日本國內電信市場規模將達到1,372.7億美元,並在2025年至2033年間以4.4%的複合年成長率成長,到2033年達到2027.68億美元。這一穩步成長反映了日本不斷擴展的數位生態系統。同時,5G部署也取得了快速進展,截至2024年3月,5G用戶數已超過9,000萬。神奈川縣和大阪府等地區以高達99.9%的5G普及率領先全國。 5G部署需要先進的光基礎設施,而光子積體電路能夠提供必要的擴展性和性能。此外,隨著日本數據消費量的成長,現代化資料中心也在不斷擴建,而光子積體電路有助於提高頻寬效率並降低延遲。這些進步鞏固了日本作為光電領域區域先驅的地位,並促進了市場成長。

將PIC應用於醫療保健和智慧城市領域

除了通訊領域,光子積體電路(PIC)在日本醫療保健和智慧城市建設中也發揮關鍵作用,與該國更廣泛的技術發展目標相契合。在醫療保健領域,PIC能夠實現精準的即時數據分析,顯著提升醫療診斷水準和患者療效。研究人員也正在開發基於矽光電的生物感測器,這些感測器能夠同時檢測多種生物標記物,從而促進疾病的早期診斷。同時,日本智慧城市市場持續保持強勁成長,預計到2024年將達到841億美元,並有望在2033年飆升至2,866億美元,2025年至2033年的複合年成長率(CAGR)為14.6%。 PIC在這一轉型過程中至關重要,它以先進的通訊能力和高效的數據處理能力為關鍵的智慧基礎設施提供支援。城市環境中物聯網設備的激增推動了對快速可靠連接的需求,而PIC透過確保無縫的資料傳輸來滿足這一需求。

本報告解答的關鍵問題

  • 日本光子積體電路市場目前發展狀況如何?您認為未來幾年它將如何發展?
  • 日本光子積體電路市場按組件分類的組成是什麼?
  • 日本光子積體電路市場依原料分類的組成是怎樣的?
  • 日本光子積體電路市場依整合度分類的組成是怎樣的?
  • 日本光子積體電路市場依應用領域分類的組成是怎樣的?
  • 日本光子積體電路市場價值鏈各環節的現況如何?
  • 日本光子積體電路市場的主要促進因素和挑戰是什麼?
  • 日本光子積體電路市場的結構是怎麼樣的?主要參與者有哪些?
  • 日本光子積體電路市場競爭程度如何?

目錄

第1章:序言

第2章:調查範圍與調查方法

  • 調查目標
  • 相關利益者
  • 數據來源
  • 市場估值
  • 調查方法

第3章執行摘要

第4章 日本光子積體電路市場-簡介

  • 概述
  • 市場動態
  • 產業趨勢
  • 競爭資訊

第5章 日本光子積體電路市場概述

  • 過去和當前的市場趨勢(2020-2025)
  • 市場預測(2026-2034)

第6章:日本光子積體電路市場-按組件細分

  • 雷射
  • MUX/DEMUX
  • 光放大器
  • 數據機
  • 衰減器
  • 檢測器

第7章:日本光子積體電路市場-依原料細分

  • 磷化銦(InP)
  • 砷化鎵(GaAs)
  • 鈮酸鋰(LiNbO3)
  • 矽上二氧化矽

第8章:日本光子積體電路市場-以整合度分類

  • 整體整合
  • 混合整合
  • 模組整合

第9章 日本光子積體電路市場-依應用領域細分

  • 光纖通訊
  • 光纖感測器
  • 生物醫學
  • 量子計算

第10章:日本光子積體電路市場:依地區分類

  • 關東地區
  • 關西、近畿地區
  • 中部地區
  • 九州和沖繩地區
  • 東北部地區
  • 中國地區
  • 北海道地區
  • 四國地區

第11章:日本光子積體電路市場:競爭格局

  • 概述
  • 市場結構
  • 市場公司定位
  • 關鍵成功策略
  • 競爭對手儀錶板
  • 企業估值象限

第12章主要企業概況

第13章:日本光子積體電路市場:產業分析

  • 促進因素、限制因素和機遇
  • 波特五力分析
  • 價值鏈分析

第14章附錄

簡介目錄
Product Code: SR112026A33939

The Japan photonic integrated circuit market size reached USD 940.1 Million in 2025 . Looking forward, IMARC Group expects the market to reach USD 3,847.5 Million by 2034 , exhibiting a growth rate (CAGR) of 16.95% during 2026-2034 . The market is experiencing robust growth, spurred by the elevating demand for high-speed data transmission, particularly with the expansion of 5G and the anticipated shift to 6G networks, Japan's strong semiconductor manufacturing ecosystem, and the integration of photonics in emerging technologies, such as quantum computing and artificial intelligence.

JAPAN PHOTONIC INTEGRATED CIRCUIT MARKET TRENDS:

Expansion of High-Speed Data Infrastructure

Japan's robust digital transformation efforts have fueled significant investments in telecommunications and data center infrastructures, creating strong momentum for the adoption of photonic integrated circuits (PICs), which are crucial for high-speed, low-latency data transmission. The country's telecom market reached USD 137,207 million in 2024 and is projected to grow to USD 202,768 million by 2033, at a CAGR of 4.4% between 2025 and 2033. This steady growth reflects Japan's expanding digital ecosystem. In parallel, the nation has rapidly advanced 5G deployment, with over 90 million 5G subscriptions recorded by March 2024. Prefectures like Kanagawa and Osaka lead the country in coverage, achieving a remarkable 99.9% 5G penetration. This rollout demands advanced optical infrastructure, where PICs provide the necessary scalability and performance. Additionally, Japan's growing data consumption has led to the expansion of modern data centers, where PICs enhance bandwidth efficiency and reduce latency. These developments solidify Japan's position as a regional frontrunner in photonics, bolstering the market growth.

To get more information on this market Request Sample

Integration of PICs in Healthcare and Smart City Applications

Beyond telecommunications, PICs are playing a pivotal role in advancing Japan's healthcare and smart city initiatives, in alignment with the nation's broader technological ambitions. In healthcare, PICs enable precise, real-time data analysis, significantly improving medical diagnostics and patient outcomes. Researchers are also developing silicon photonics-based biosensors capable of detecting multiple biomarkers simultaneously, facilitating early disease diagnosis. Meanwhile, Japan's smart cities market is experiencing robust growth, having reached USD 84.1 billion in 2024. The market is expected to surge to USD 286.6 billion by 2033, growing at a CAGR of 14.6% from 2025 to 2033. PICs are essential for this transformation, underpinning critical smart infrastructure with advanced communication capabilities and efficient data handling. With the proliferation of IoT devices across urban environments, the need for high-speed, reliable connectivity is rising, and PICs meet this demand by ensuring seamless data transmission.

JAPAN PHOTONIC INTEGRATED CIRCUIT MARKET SEGMENTATION:

Component Insights:

  • Lasers
  • MUX/DEMUX
  • Optical Amplifiers
  • Modulators
  • Attenuators
  • Detectors
  • Lasers
  • MUX/DEMUX
  • Optical Amplifiers
  • Modulators
  • Attenuators
  • Detectors

Raw Material Insights:

  • Indium Phosphide (InP)
  • Gallium Arsenide (GaAs)
  • Lithium Niobate (LiNbO 3 )
  • Silicon
  • Silica-on-Silicon
  • Indium Phosphide (InP)
  • Gallium Arsenide (GaAs)
  • Lithium Niobate (LiNbO 3 )
  • Silicon
  • Silica-on-Silicon

Integration Insights:

  • Monolithic Integration
  • Hybrid Integration
  • Module Integration
  • Monolithic Integration
  • Hybrid Integration
  • Module Integration

Application Insights:

  • Access the comprehensive market breakdown Request Sample
  • Optical Fiber Communication
  • Optical Fiber Sensor
  • Biomedical
  • Quantum Computing
  • Optical Fiber Communication
  • Optical Fiber Sensor
  • Biomedical
  • Quantum Computing

Regional Insights:

  • Kanto Region
  • Kansai/Kinki Region
  • Central/Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region
  • Kanto Region
  • Kansai/Kinki Region
  • Central/Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region
  • The report has also provided a comprehensive analysis of all the major regional markets, which include Kanto Region, Kansai/Kinki Region, Central/Chubu Region, Kyushu-Okinawa Region, Tohoku Region, Chugoku Region, Hokkaido Region, and Shikoku Region.

COMPETITIVE LANDSCAPE:

The market research report has also provided a comprehensive analysis of the competitive landscape. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

  • KEY QUESTIONS ANSWERED IN THIS REPORT
  • How has the Japan photonic integrated circuit market performed so far and how will it perform in the coming years?
  • What is the breakup of the Japan photonic integrated circuit market on the basis of component?
  • What is the breakup of the Japan photonic integrated circuit market on the basis of raw material?
  • What is the breakup of the Japan photonic integrated circuit market on the basis of integration?
  • What is the breakup of the Japan photonic integrated circuit market on the basis of application?
  • What are the various stages in the value chain of the Japan photonic integrated circuit market?
  • What are the key driving factors and challenges in the Japan photonic integrated circuit market?
  • What is the structure of the Japan photonic integrated circuit market and who are the key players?
  • What is the degree of competition in the Japan photonic integrated circuit market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan Photonic Integrated Circuit Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan Photonic Integrated Circuit Market Landscape

  • 5.1 Historical and Current Market Trends (2020-2025)
  • 5.2 Market Forecast (2026-2034)

6 Japan Photonic Integrated Circuit Market - Breakup by Component

  • 6.1 Lasers
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2020-2025)
    • 6.1.3 Market Forecast (2026-2034)
  • 6.2 MUX/DEMUX
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2020-2025)
    • 6.2.3 Market Forecast (2026-2034)
  • 6.3 Optical Amplifiers
    • 6.3.1 Overview
    • 6.3.2 Historical and Current Market Trends (2020-2025)
    • 6.3.3 Market Forecast (2026-2034)
  • 6.4 Modulators
    • 6.4.1 Overview
    • 6.4.2 Historical and Current Market Trends (2020-2025)
    • 6.4.3 Market Forecast (2026-2034)
  • 6.5 Attenuators
    • 6.5.1 Overview
    • 6.5.2 Historical and Current Market Trends (2020-2025)
    • 6.5.3 Market Forecast (2026-2034)
  • 6.6 Detectors
    • 6.6.1 Overview
    • 6.6.2 Historical and Current Market Trends (2020-2025)
    • 6.6.3 Market Forecast (2026-2034)

7 Japan Photonic Integrated Circuit Market - Breakup by Raw Material

  • 7.1 Indium Phosphide (InP)
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2020-2025)
    • 7.1.3 Market Forecast (2026-2034)
  • 7.2 Gallium Arsenide (GaAs)
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2020-2025)
    • 7.2.3 Market Forecast (2026-2034)
  • 7.3 Lithium Niobate (LiNbO3)
    • 7.3.1 Overview
    • 7.3.2 Historical and Current Market Trends (2020-2025)
    • 7.3.3 Market Forecast (2026-2034)
  • 7.4 Silicon
    • 7.4.1 Overview
    • 7.4.2 Historical and Current Market Trends (2020-2025)
    • 7.4.3 Market Forecast (2026-2034)
  • 7.5 Silica-on-Silicon
    • 7.5.1 Overview
    • 7.5.2 Historical and Current Market Trends (2020-2025)
    • 7.5.3 Market Forecast (2026-2034)

8 Japan Photonic Integrated Circuit Market - Breakup by Integration

  • 8.1 Monolithic Integration
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2020-2025)
    • 8.1.3 Market Forecast (2026-2034)
  • 8.2 Hybrid Integration
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2020-2025)
    • 8.2.3 Market Forecast (2026-2034)
  • 8.3 Module Integration
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2020-2025)
    • 8.3.3 Market Forecast (2026-2034)

9 Japan Photonic Integrated Circuit Market - Breakup by Application

  • 9.1 Optical Fiber Communication
    • 9.1.1 Overview
    • 9.1.2 Historical and Current Market Trends (2020-2025)
    • 9.1.3 Market Forecast (2026-2034)
  • 9.2 Optical Fiber Sensor
    • 9.2.1 Overview
    • 9.2.2 Historical and Current Market Trends (2020-2025)
    • 9.2.3 Market Forecast (2026-2034)
  • 9.3 Biomedical
    • 9.3.1 Overview
    • 9.3.2 Historical and Current Market Trends (2020-2025)
    • 9.3.3 Market Forecast (2026-2034)
  • 9.4 Quantum Computing
    • 9.4.1 Overview
    • 9.4.2 Historical and Current Market Trends (2020-2025)
    • 9.4.3 Market Forecast (2026-2034)

10 Japan Photonic Integrated Circuit Market - Breakup by Region

  • 10.1 Kanto Region
    • 10.1.1 Overview
    • 10.1.2 Historical and Current Market Trends (2020-2025)
    • 10.1.3 Market Breakup by Component
    • 10.1.4 Market Breakup by Raw Material
    • 10.1.5 Market Breakup by Integration
    • 10.1.6 Market Breakup by Application
    • 10.1.7 Key Players
    • 10.1.8 Market Forecast (2026-2034)
  • 10.2 Kansai/Kinki Region
    • 10.2.1 Overview
    • 10.2.2 Historical and Current Market Trends (2020-2025)
    • 10.2.3 Market Breakup by Component
    • 10.2.4 Market Breakup by Raw Material
    • 10.2.5 Market Breakup by Integration
    • 10.2.6 Market Breakup by Application
    • 10.2.7 Key Players
    • 10.2.8 Market Forecast (2026-2034)
  • 10.3 Central/ Chubu Region
    • 10.3.1 Overview
    • 10.3.2 Historical and Current Market Trends (2020-2025)
    • 10.3.3 Market Breakup by Component
    • 10.3.4 Market Breakup by Raw Material
    • 10.3.5 Market Breakup by Integration
    • 10.3.6 Market Breakup by Application
    • 10.3.7 Key Players
    • 10.3.8 Market Forecast (2026-2034)
  • 10.4 Kyushu-Okinawa Region
    • 10.4.1 Overview
    • 10.4.2 Historical and Current Market Trends (2020-2025)
    • 10.4.3 Market Breakup by Component
    • 10.4.4 Market Breakup by Raw Material
    • 10.4.5 Market Breakup by Integration
    • 10.4.6 Market Breakup by Application
    • 10.4.7 Key Players
    • 10.4.8 Market Forecast (2026-2034)
  • 10.5 Tohoku Region
    • 10.5.1 Overview
    • 10.5.2 Historical and Current Market Trends (2020-2025)
    • 10.5.3 Market Breakup by Component
    • 10.5.4 Market Breakup by Raw Material
    • 10.5.5 Market Breakup by Integration
    • 10.5.6 Market Breakup by Application
    • 10.5.7 Key Players
    • 10.5.8 Market Forecast (2026-2034)
  • 10.6 Chugoku Region
    • 10.6.1 Overview
    • 10.6.2 Historical and Current Market Trends (2020-2025)
    • 10.6.3 Market Breakup by Component
    • 10.6.4 Market Breakup by Raw Material
    • 10.6.5 Market Breakup by Integration
    • 10.6.6 Market Breakup by Application
    • 10.6.7 Key Players
    • 10.6.8 Market Forecast (2026-2034)
  • 10.7 Hokkaido Region
    • 10.7.1 Overview
    • 10.7.2 Historical and Current Market Trends (2020-2025)
    • 10.7.3 Market Breakup by Component
    • 10.7.4 Market Breakup by Raw Material
    • 10.7.5 Market Breakup by Integration
    • 10.7.6 Market Breakup by Application
    • 10.7.7 Key Players
    • 10.7.8 Market Forecast (2026-2034)
  • 10.8 Shikoku Region
    • 10.8.1 Overview
    • 10.8.2 Historical and Current Market Trends (2020-2025)
    • 10.8.3 Market Breakup by Component
    • 10.8.4 Market Breakup by Raw Material
    • 10.8.5 Market Breakup by Integration
    • 10.8.6 Market Breakup by Application
    • 10.8.7 Key Players
    • 10.8.8 Market Forecast (2026-2034)

11 Japan Photonic Integrated Circuit Market - Competitive Landscape

  • 11.1 Overview
  • 11.2 Market Structure
  • 11.3 Market Player Positioning
  • 11.4 Top Winning Strategies
  • 11.5 Competitive Dashboard
  • 11.6 Company Evaluation Quadrant

12 Profiles of Key Players

  • 12.1 Company A
    • 12.1.1 Business Overview
    • 12.1.2 Products Offered
    • 12.1.3 Business Strategies
    • 12.1.4 SWOT Analysis
    • 12.1.5 Major News and Events
  • 12.2 Company B
    • 12.2.1 Business Overview
    • 12.2.2 Products Offered
    • 12.2.3 Business Strategies
    • 12.2.4 SWOT Analysis
    • 12.2.5 Major News and Events
  • 12.3 Company C
    • 12.3.1 Business Overview
    • 12.3.2 Products Offered
    • 12.3.3 Business Strategies
    • 12.3.4 SWOT Analysis
    • 12.3.5 Major News and Events
  • 12.4 Company D
    • 12.4.1 Business Overview
    • 12.4.2 Products Offered
    • 12.4.3 Business Strategies
    • 12.4.4 SWOT Analysis
    • 12.4.5 Major News and Events
  • 12.5 Company E
    • 12.5.1 Business Overview
    • 12.5.2 Products Offered
    • 12.5.3 Business Strategies
    • 12.5.4 SWOT Analysis
    • 12.5.5 Major News and Events

13 Japan Photonic Integrated Circuit Market - Industry Analysis

  • 13.1 Drivers, Restraints, and Opportunities
    • 13.1.1 Overview
    • 13.1.2 Drivers
    • 13.1.3 Restraints
    • 13.1.4 Opportunities
  • 13.2 Porters Five Forces Analysis
    • 13.2.1 Overview
    • 13.2.2 Bargaining Power of Buyers
    • 13.2.3 Bargaining Power of Suppliers
    • 13.2.4 Degree of Competition
    • 13.2.5 Threat of New Entrants
    • 13.2.6 Threat of Substitutes
  • 13.3 Value Chain Analysis

14 Appendix