封面
市場調查報告書
商品編碼
1858847

汽車雷達半導體市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)

Automotive Radar Semiconductors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球汽車雷達半導體市場價值為 29 億美元,預計到 2034 年將以 12.4% 的複合年成長率成長至 93 億美元。

汽車雷達半導體市場 - IMG1

該市場的穩定擴張歸功於先進駕駛輔助系統(ADAS) 的廣泛應用和自動駕駛技術的日益普及。雷達半導體是這些系統的核心組件,可實現自適應巡航控制、車道維持、障礙物偵測和碰撞緩解等功能。隨著汽車行業電氣化和互聯技術的進步,這些晶片對於實現即時安全響應至關重要。該市場與更廣泛的半導體技術發展同步演進,重點關注性能、可靠性和供應鏈韌性。全球監管機構對車輛安全改進的大力支持也加速了半導體整合。隨著汽車生態系統快速向智慧出行轉型,雷達積體電路和模組對於建立更智慧、更安全的駕駛環境至關重要。隨著半導體研發投入的增加,這些組件有望主導汽車電子領域,尤其是在旨在增強車輛感知、控制和決策能力的雷達系統中。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 29億美元
預測值 93億美元
複合年成長率 12.4%

由於收發器晶片(MMIC)在雷達訊號的發射和接收中發揮關鍵作用,預計到2024年,其市場佔有率將達到34%,佔據市場主導地位。這些晶片廣泛應用於遠端和近程雷達系統,並提供探測車輛、行人和道路危險所需的高頻精度。其卓越的性能和可靠性持續推動ADAS和自動駕駛平台的應用。隨著全球車輛自動化規模的擴大,預計對這些雷達收發器的需求將保持強勁。

預計到2034年,77 GHz雷達頻段的年複合成長率將達到13.6%。該頻段因其能夠提供更高的解析度和更遠的探測距離而成為遠端雷達的首選頻段,這對於前向碰撞預警、高速公路駕駛輔助和自適應巡航系統等應用至關重要。它已成為豪華車和中檔車尋求增強駕駛輔助功能的標配。

預計到2024年,中國汽車雷達半導體市場規模將達到11.9億美元。隨著智慧交通系統的快速發展,中國在汽車雷達應用方面處於領先地位。政府對安全標準和電動車推廣的大力支持,顯著推動了雷達積體電路在各類車輛中的應用。國內外汽車製造商的不斷湧入,進一步增強了該地區對高性能雷達半導體解決方案的需求。

汽車雷達半導體市場的主要參與者包括意法半導體 (STMicroelectronics)、瑞薩電子 (Renesas Electronics)、亞德諾半導體 (ADI)、英飛凌科技 (Infineon Technologies)、德州儀器 (TI)、Qorvo、Uhnder、恩智浦半導體 (Infineon Technologies)、德州儀器 (TI)、Qorvo、Uhnder、恩智浦半導體 (VNX Sy)、BNX Sap取s)、Varb為了保持競爭力,汽車雷達半導體市場的企業正採取積極的策略,包括加強研發投入,以提升晶片性能、降低功耗並實現與下一代汽車系統的整合。與汽車製造商和一級供應商建立合作關係對於使雷達積體電路設計與高級駕駛輔助系統 (ADAS) 和自動駕駛汽車的要求保持一致也至關重要。領先企業正在擴大產能以滿足不斷成長的需求,同時也在豐富產品組合,以滿足從短程雷達到全端自動駕駛系統的各種應用需求。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 地區/國家
  • 基準估算和計算
    • 基準年計算
    • 市場估算的關鍵趨勢
  • 初步研究和驗證
    • 原始資料
  • 預報
  • 研究假設和局限性

第2章:執行概要

第3章:行業洞察

  • 產業生態系分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的價值增加
    • 影響價值鏈的因素
    • 中斷
  • 價值鏈分析
    • 上游價值鏈
    • 中游價值鏈
    • 下游價值鏈
  • 產業影響因素
    • 成長促進因素
      • 提高ADAS採用率
      • 自動駕駛汽車的發展
      • 緊湊一體化設計
      • 提高車輛電氣化程度
    • 產業陷阱與挑戰
      • 高昂的開發和生產成本
      • 惡劣環境下的技術挑戰
      • 供應鏈中斷
      • 網路安全問題
    • 市場機遇
      • 新興市場的擴張
      • 與人工智慧和感測器融合的整合
      • 政府獎勵措施和安全法規
      • 商用和車隊車輛的採用
  • 成長潛力分析
  • 監管環境
    • 聯合國歐洲經濟委員會第152號法規-高級緊急煞車系統(AEBS)
    • 歐盟通用安全法規
    • 美國聯邦機動車輛安全標準(FMVSS)
    • 中國工信部智慧網聯汽車指南2024
    • 日本多學科自動駕駛安全框架
  • 波特的分析
  • PESTEL 分析
  • 未來趨勢
  • 技術與創新格局
    • 目前技術
      • 77 GHz 與 79 GHz 毫米波雷達技術
      • 4D成像雷達
      • 基於CMOS和SiGe的雷達SoC
    • 新興技術
      • 數位波束形成雷達
      • 人工智慧驅動的雷達訊號處理
      • 雷達視覺感測器融合SoC
  • 價格趨勢
    • 依產品
    • 按地區
  • 專利分析
  • 成本細分分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考量
  • 車輛系統整合與感測器融合
    • 多感測器架構的複雜性
    • 雷達-攝影機融合挑戰
    • 雷達-LiDAR融合策略
    • ECU整合和處理要求
    • 即時資料融合演算法
  • ADAS應用效能最佳化
    • 特定應用雷達要求
    • 範圍與解析度之間的權衡
    • 角度解析度增強需求
    • 速度測量精度
    • 多目標偵測能力
  • 雷達晶片設計與製造挑戰
    • 矽製程技術選擇
    • 射頻電路設計的複雜性
    • 封裝內天線整合
    • 熱管理解決方案
    • 功耗最佳化
  • 汽車供應鏈與資格認證
    • 汽車級零件認證
    • AEC-Q100 合規性要求
    • 長期供應保障
    • 供應鏈風險緩解
  • 軟體-硬體協同設計演進
    • 軟體定義雷達架構
    • 可配置訊號處理
    • 空中升級功能
    • 人工智慧演算法整合
  • 汽車安全標準合規性
    • ISO 26262 功能安全要求
    • ASIL評級及風險評估
    • 安全案例開發
    • 危害分析與風險評估(HARA)
  • 環境與營運挑戰
    • 天氣條件性能
    • 干擾緩解策略
    • 多路徑反射處理
    • 城市峽谷表演
    • 溫度變化補償
  • 成本最佳化與價值工程
    • 晶片架構成本分析
    • 整合度與成本之間的權衡
    • 批量生產經濟學
    • 系統總成本最佳化

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東非洲
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 合作夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估算與預測:依組件分類,2021-2034年

  • 主要趨勢
  • 硬體
    • 射頻前端與天線
    • 訊號處理器
    • 感測器封裝及模組
  • 軟體
    • 訊號處理軟體
    • 感測器融合與人工智慧軟體
    • 校準與測試軟體
  • 服務

第6章:市場估計與預測:依頻段分類,2021-2034年

  • 主要趨勢
  • 24 GHz
  • 77 GHz
  • 79 GHz

第7章:市場估算與預測:依區間分類,2021-2034年

  • 主要趨勢
  • 短程雷達(SRR)
  • 中程雷達(MRR)
  • 遠程雷達(LRR)
  • 成像雷達

第8章:市場估算與預測:以一體化程度分類,2021-2034年

  • 主要趨勢
  • 僅收發器型晶片雷達
  • 完整的雷達SoC(系統單晶片)
  • 數位/成像雷達晶片

第9章:市場估計與預測:依應用領域分類,2021-2034年

  • 主要趨勢
  • ADAS安全系統
    • 盲點偵測(BSD)
    • 自動緊急煞車(AEB)
    • 自適應巡航控制(ACC)
    • 避免碰撞
  • 自動駕駛功能
    • 高速公路自動駕駛
    • 城市自動駕駛
    • 感測器融合
  • 機艙內解決方案
  • 電動車專用解決方案

第10章:市場估計與預測:依地區分類,2021-2034年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐
    • 波蘭
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 越南
    • 新加坡
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第11章:公司簡介

  • 全球參與者
    • Texas Instruments
    • NXP Semiconductors
    • Infineon Technologies
    • Analog Devices
    • STMicroelectronics
    • Renesas Electronics
    • Qualcomm Technologies
    • Broadcom
  • 區域玩家
    • Continental
    • Robert Bosch
    • Denso
    • Aptiv
    • Valeo
    • Magna International
    • ZF Friedrichshafen
    • Veoneer (Arriver)
  • 新興參與者和顛覆者
    • Arbe Robotics
    • Oculii Corp (Ambarella)
    • Uhnder
    • Steradian Semiconductors
    • Echodyne
    • Metawave
    • Ainstein AI
    • RFISee
    • Vayyar Imaging
簡介目錄
Product Code: 14884

The Global Automotive Radar Semiconductors Market was valued at USD 2.9 billion in 2024 and is estimated to grow at a CAGR of 12.4% to reach USD 9.3 billion by 2034.

Automotive Radar Semiconductors Market - IMG1

The steady expansion of this market is attributed to the widespread implementation of advanced driver assistance systems (ADAS) and the growing presence of autonomous driving technologies. Radar semiconductors are a core component of these systems, allowing for functions like adaptive cruise control, lane-keeping, obstacle detection, and collision mitigation. As electrification and connectivity advance in the auto industry, these chips are increasingly critical for enabling real-time safety responses. The market continues to evolve alongside broader semiconductor advancements, with emphasis on performance, reliability, and supply chain resilience. Strong support from regulatory bodies worldwide for safety enhancements in vehicles is also accelerating semiconductor integration. With the automotive ecosystem shifting rapidly toward smart mobility, radar ICs and modules are becoming essential for enabling smarter and safer driving environments. As semiconductor R&D efforts grow, these components are expected to dominate the automotive electronics landscape, particularly in radar-powered systems designed to enhance vehicle awareness, control, and decision-making.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.9 Billion
Forecast Value$9.3 Billion
CAGR12.4%

The transceiver chips (MMICs) segment led the market with a 34% share in 2024, due to their pivotal role in transmitting and receiving radar signals. These chips are widely deployed across both long-range and short-range radar systems and offer the high-frequency precision necessary for detecting vehicles, pedestrians, and road hazards. Their superior performance and reliability continue to drive adoption across ADAS and autonomous platforms. As vehicle automation scales globally, demand for these radar transceivers is projected to remain strong.

The 77 GHz radar band segment is forecasted to grow at a 13.6% CAGR through 2034. This frequency band is preferred for long-range radar due to its ability to deliver higher resolution and longer detection range, which is crucial for applications such as forward collision warning, highway driving assistance, and adaptive cruise systems. It has become a staple in both luxury and mid-tier vehicles seeking enhanced driver assistance features.

China Automotive Radar Semiconductors Market generated USD 1.19 billion in 2024. With rapid development in intelligent transportation systems, China is leading the way in automotive radar adoption. Strong governmental support for safety standards and EV promotion has significantly boosted radar IC deployment across vehicle categories. The growing presence of both global and domestic automakers has further strengthened demand for high-performance radar semiconductor solutions in the region.

Key players active in the Automotive Radar Semiconductors Market are STMicroelectronics, Renesas Electronics, Analog Devices (ADI), Infineon Technologies, Texas Instruments (TI), Qorvo, Uhnder, NXP Semiconductors, Vayyar Imaging, and Arbe Robotics. Companies in the Automotive Radar Semiconductors Market are adopting aggressive strategies to stay competitive, including high investment in research and development to enhance chip performance, reduce power consumption, and enable integration with next-gen vehicle systems. Partnerships with automakers and tier-1 suppliers are also key for aligning radar IC design with ADAS and autonomous vehicle requirements. Leading players are expanding production capacity to meet growing demand while diversifying their product portfolios to cater to a range of applications from short-range radar to full-stack autonomous systems.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Frequency band
    • 2.2.4 Range
    • 2.2.5 Integration level
    • 2.2.6 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook
  • 2.6 Strategic recommendations
    • 2.6.1 Supply chain diversification strategy
    • 2.6.2 Product portfolio enhancement
    • 2.6.3 Partnership and alliance opportunities
    • 2.6.4 Cost management and pricing strategy

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Value chain analysis
    • 3.2.1 Upstream value chain
    • 3.2.2 Midstream value chain
    • 3.2.3 Downstream value chain
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Increasing ADAS adoption
      • 3.3.1.2 Growth of autonomous vehicles
      • 3.3.1.3 Compact and integrated design
      • 3.3.1.4 Increasing vehicle electrification
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High development and production costs
      • 3.3.2.2 Technical challenges in harsh environments
      • 3.3.2.3 Supply chain disruptions
      • 3.3.2.4 Cybersecurity concerns
    • 3.3.3 Market opportunities
      • 3.3.3.1 Expansion in emerging markets
      • 3.3.3.2 Integration with ai and sensor fusion
      • 3.3.3.3 Government incentives and safety regulations
      • 3.3.3.4 Adoption in commercial and fleet vehicles
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
    • 3.5.1 UNECE regulation no. 152 - advanced emergency braking systems (AEBS)
    • 3.5.2 Eu general safety regulation
    • 3.5.3 US federal motor vehicle safety standards (FMVSS)
    • 3.5.4 China miit intelligent and connected vehicle guidelines 2024
    • 3.5.5 Japan mlit autonomous driving safety framework
  • 3.6 Porter's analysis
  • 3.7 PESTEL analysis
  • 3.8 Future trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technologies
      • 3.9.1.1 77 ghz and 79 ghz mmwave radar technology
      • 3.9.1.2 4d imaging radar
      • 3.9.1.3 CMOS and SiGe-based radar socs
    • 3.9.2 Emerging technologies
      • 3.9.2.1 Digital beamforming radar
      • 3.9.2.2 AI-powered radar signal processing
      • 3.9.2.3 Radar-vision sensor fusion Socs
  • 3.10 Price trends
    • 3.10.1 By product
    • 3.10.2 By region
  • 3.11 Patent analysis
  • 3.12 Cost breakdown analysis
  • 3.13 Sustainability and environmental aspects
    • 3.13.1 Sustainable practices
    • 3.13.2 Waste reduction strategies
    • 3.13.3 Energy efficiency in production
    • 3.13.4 Eco-friendly Initiatives
    • 3.13.5 Carbon footprint considerations
  • 3.14 Vehicle System Integration & Sensor Fusion
    • 3.14.1 Multi-sensor architecture complexity
    • 3.14.2 Radar-camera fusion challenges
    • 3.14.3 Radar-LiDAR integration strategies
    • 3.14.4 ECU integration & processing requirements
    • 3.14.5 Real-time data fusion algorithms
  • 3.15 ADAS Application Performance Optimization
    • 3.15.1 Application-specific radar requirements
    • 3.15.2 Range vs resolution trade-offs
    • 3.15.3 Angular resolution enhancement needs
    • 3.15.4 Velocity measurement accuracy
    • 3.15.5 Multi-target detection capabilities
  • 3.16 Radar Chip Design & Manufacturing Challenges
    • 3.16.1 Silicon process technology selection
    • 3.16.2 RF circuit design complexity
    • 3.16.3 Antenna-in-package integration
    • 3.16.4 Thermal management solutions
    • 3.16.5 Power consumption optimization
  • 3.17 Automotive Supply Chain & Qualification
    • 3.17.1 Automotive-grade component qualification
    • 3.17.2 AEC-Q100 compliance requirements
    • 3.17.3 Long-term supply assurance
    • 3.17.4 Supply chain risk mitigation
  • 3.18 Software-Hardware Co-Design Evolution
    • 3.18.1 Software-defined radar architecture
    • 3.18.2 Configurable signal processing
    • 3.18.3 Over-the-air update capabilities
    • 3.18.4 AI algorithm integration
  • 3.19 Automotive Safety Standards Compliance
    • 3.19.1 ISO 26262 functional safety requirements
    • 3.19.2 ASIL rating & risk assessment
    • 3.19.3 Safety case development
    • 3.19.4 Hazard analysis & risk assessment (HARA)
  • 3.20 Environmental & Operational Challenges
    • 3.20.1 Weather condition performance
    • 3.20.2 Interference mitigation strategies
    • 3.20.3 Multi-path reflection handling
    • 3.20.4 Urban canyon performance
    • 3.20.5 Temperature variation compensation
  • 3.21 Cost Optimization & Value Engineering
    • 3.21.1 Chip architecture cost analysis
    • 3.21.2 Integration level vs cost trade-offs
    • 3.21.3 Volume production economics
    • 3.21.4 Total system cost optimization

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis, 2024
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 RF Front-End & Antennas
    • 5.2.2 Signal Processors
    • 5.2.3 Sensor Packaging & Modules
  • 5.3 Software
    • 5.3.1 Signal Processing Software
    • 5.3.2 Sensor Fusion & AI Software
    • 5.3.3 Calibration & Testing Software
  • 5.4 Services

Chapter 6 Market Estimates & Forecast, By Frequency Band, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 24 GHz
  • 6.3 77 GHz
  • 6.4 79 GHz

Chapter 7 Market Estimates & Forecast, By Range, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Short-Range Radar (SRR)
  • 7.3 Medium-Range Radar (MRR)
  • 7.4 Long-Range Radar (LRR)
  • 7.5 Imaging Radar

Chapter 8 Market Estimates & Forecast, By Integration level, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 Transceiver-Only Radar-on-Chip
  • 8.3 Complete Radar SoC (System-on-Chip)
  • 8.4 Digital/Imaging Radar Chips

Chapter 9 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 ADAS Safety Systems
    • 9.2.1 Blind-spot detection (BSD)
    • 9.2.2 Autonomous emergency braking (AEB)
    • 9.2.3 Adaptive cruise control (ACC)
    • 9.2.4 Collision avoidance
  • 9.3 Autonomous Driving Functions
    • 9.3.1 Highway autopilot
    • 9.3.2 Urban automated driving
    • 9.3.3 Sensor fusion
  • 9.4 In cabin solution
  • 9.5 EV specific solutions

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Poland
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Vietnam
    • 10.4.7 Singapore
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 South Africa
    • 10.6.2 Saudi Arabia
    • 10.6.3 UAE

Chapter 11 Company Profiles

  • 11.1 Global players
    • 11.1.1 Texas Instruments
    • 11.1.2 NXP Semiconductors
    • 11.1.3 Infineon Technologies
    • 11.1.4 Analog Devices
    • 11.1.5 STMicroelectronics
    • 11.1.6 Renesas Electronics
    • 11.1.7 Qualcomm Technologies
    • 11.1.8 Broadcom
  • 11.2 Regional players
    • 11.2.1 Continental
    • 11.2.2 Robert Bosch
    • 11.2.3 Denso
    • 11.2.4 Aptiv
    • 11.2.5 Valeo
    • 11.2.6 Magna International
    • 11.2.7 ZF Friedrichshafen
    • 11.2.8 Veoneer (Arriver)
  • 11.3 Emerging players and disruptors
    • 11.3.1 Arbe Robotics
    • 11.3.2 Oculii Corp (Ambarella)
    • 11.3.3 Uhnder
    • 11.3.4 Steradian Semiconductors
    • 11.3.5 Echodyne
    • 11.3.6 Metawave
    • 11.3.7 Ainstein AI
    • 11.3.8 RFISee
    • 11.3.9 Vayyar Imaging