資料中心、微電網和住宅應用的長期儲能(LDES):技術趨勢和市場展望(2026-2036)
市場調查報告書
商品編碼
1880930

資料中心、微電網和住宅應用的長期儲能(LDES):技術趨勢和市場展望(2026-2036)

Long Duration Energy Storage for Datacenters, Microgrids, Houses: Technologies, Markets 2026-2036

出版日期: | 出版商: Zhar Research | 英文 394 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

電網以外的眾多應用都需要延遲供電。本報告預測,到2046年,該市場規模將達到970億美元,佔新興長期儲能(LDES)市場總額的36%。 此處的目標應用領域包括離網和 "邊緣電網" 應用,這些應用的需求與電網截然不同。雖然所需的儲能單元數量是電網的100倍,但每個單元都必須體積小、佔用空間有限、安全可靠,適合室內使用、可堆疊且佔地面積小,並且壽命長、可靠性高,能夠滿足偏遠地區的應用需求。本報告預測,到2046年之前,長期儲能將在太陽能住宅中廣泛應用,其中許多住宅將是離網的。這份內容詳盡的報告包含 10 個章節、17 項 SWOT 分析以及 2026 年至 2046 年的 24 條預測線,涵蓋 100 多家公司以及截至 2025 年的研究趨勢。

目錄

第一章:摘要整理與結論

  • 本報告的目標和獨特範圍
  • 本分析的研究方法
  • 目前離網型低能耗系統 (LDES) 及類似案例
  • 技術基礎
  • 關於電氣化和低能耗系統 (LDES) 的定義、需求和候選方案的 18 個關鍵結論
  • 資訊圖表:以技術劃分的低能耗系統 (LDES) 體積能量密度(2026 年和 2046 年)
  • 資訊圖表:微電網及類似 LDES 替代方案(2026-2046 年)
  • 資訊圖表:離網太陽能住宅 + 2036-2046 年全電動 LDES 系統
  • LDES 用戶類型及潛在能源服務
  • 19 種類型和 10 種技術的潛在 LDES 效能
  • 三種 LDES 規模類別的技術優勢(2026-2046 年,基於現有證據)
  • 依技術劃分的可用站點數量(2026-2046 年):微電網機會指標
  • 依技術劃分的 LDES 需求計算及其影響
  • 當前和未來 LDES 的持續時間和電力可用性
  • 九項廣泛微型電網 LDES 技術的 SWOT 評估
  • LDES 路線圖(2026-2046)
  • 2026-2046 年市場預測(24 條預測線、圖表和評論)

第二章:低能耗儲能系統 (LDES) 的需求與設計原則

  • 能源基礎知識
  • 固定式儲能和低能耗儲能系統 (LDES) 基礎知識
  • 2025-2026 年低能耗儲能系統 (LDES) 專案(展示關鍵技術子集)
  • 以科學類別劃分的低能耗儲能系統:8 個參數的比較
  • 電化學低能耗儲能系統 (LDES) 方案詳解
  • 許多電池在續航時間超過 10 小時後失去競爭優勢
  • 2026-2046 年低能耗儲能系統 (LDES) 總體概述報告

第三章:微電網低能耗儲能系統 (LDES) 替代方案

  • 概述
  • 資訊圖表:13低密度能源系統 (LDES) 替代方案 (2026-2046)
  • 全球案例:丹麥、新加坡、中國和美國
  • 風能、太陽能或低密度能源系統 (LDES) 不足或無能情況下的容量係數選擇
  • 2025 年前低密度能源系統 (LDES) 替代方案的廣泛研究
  • 2025 年前間歇性電源家庭能源管理系統 (HEMS) 研究

第四章:先進抽水蓄能 (APHES)

  • 概述
  • 概述
  • 利用廢棄礦場
  • 加壓地下:Quidnet Energy USA
  • 利用山體與重流體:RheEnergise UK
  • 利用海水和鹽水
  • Sizeable Energy(義大利)、StEnSea(德國)、Ocean Grazer(荷蘭)
  • 混合技術:研究2024 年和 2025 年進展
  • 2024 年與 2025 年研究進展
  • APHES SWOT 評估

第五章:用於微電網低壓配電系統的氫能儲存 (H2ES) 和壓縮空氣儲能 (CAES)

  • 氫能儲存 (H2ES)
  • 用於微電網的壓縮空氣儲能 (CAES)

第六章:氧化還原液流電池 (RFB)

  • 概述
  • 研究轉向低壓配電系統 (LDES)
  • 液流電池 (RFB) 在低壓配電系統 (LDES) 的應用前景(2026-2046 年)
  • 液流電池 (RFB) 在低壓配電系統 (LDES) 的 SWOT 分析與參數比較
  • 基於 8 項標準(名稱、品牌、技術、成熟度、非電網應用)對 45 家液流電池 (RFB) 公司進行比較LDES 重點內容及評論)
  • RFB 技術(包括 2025 年前的研究)
  • 依材料分類的具體設計:釩、鐵及其變體、其他金屬配體、鹵素基、有機、錳、2025 年研究、三項 SWOT 分析
  • RFB 製造商簡介
  • 2025 年的進一步研究

第七章:固體重力儲能 (SGES)

  • 概述(包括 2025 年前的研究)
  • 美國 ARES 公司
  • 瑞士、美國、中國和印度的 Energy Vault 授權商
  • Gravitricity 公司
  • 澳洲 Green Gravity 公司
  • 法國 SinkFloatSolutions 公司

第八章:先進的傳統結構電池(ACCB)

  • 概述
  • 8 家 ACCB 製造商的 8 項標準比較
  • 參數評估和 SWOT 分析(ACCB 用於 LDES)
  • 金屬空氣電池
  • 高溫電池
  • 金屬離子電池,包括 Inlyte、Altris、HiNa、Tiamat、Natron 和 Faradion
  • 鎳氫電池:EnerVenue USA SWOT 分析

第 9 章 液化氣體儲能 (LGES):液態空氣 (LAES) 或二氧化碳

  • 概述
  • 液態空氣儲能 (LAES) LDES
  • 液態與壓縮二氧化碳儲能 (LDES)

第 10 章 用於延遲的熱能儲存 (ETES)電力

  • 2025 年概覽及研究進展
  • 2025 年與 2024 年的研究進展
  • 從失敗中學到的教訓:西門子歌美颯、Azelio、Steisdal、Lumenion
  • 熱機方法的進展:Echogen USA
  • 利用極端溫度和光伏轉換
  • 單廠延遲供熱和供電的銷售
簡介目錄

Summary

Delayed electricity is needed for much more than grids. The new 451-page Zhar Research report, "Long Duration Energy Storage for Datacenters, Microgrids, Houses: Technologies, Markets 2026-2036" forecasts a $97 billion market for this in 2046, 36% of the total LDES market emerging. The requirements are very different in this world that includes off-grid and fringe-of-grid (only rare use of grid for backup). Expect 100 times the number needed for grids but smaller, space constrained units, variously safe even in buildings, stacked for small footprint and long-life, highly-reliable for remote locations. The authors even predict LDES in large numbers of solar houses before 2046, many off-grid. Unusually thorough, the report has 10 chapters, 17 SWOT appraisals, 24 forecast lines 2026-2046, examining over 100 companies and research advances through 2025.

The Executuve Summary and Conclusions (37 pages) is the quick read with the roadmap 2026-2046 in three lines - market, company, technology - 18 key conclusions, six of the SWOT appraisals and the 24 forecasts as tables and graphs with explanation. See many new infograms. Chapter 2. LDES Need and Design Principles (15 pages) is mostly graphics introducing stationary energy storage and LDES fundamentals, actual and proposed types of LDES, nine LDES technologies that can follow the market trend to longer duration with subsets compared. Learn how the off-grid solar house LDES is the toughest challenge but coming 2036-46, understand LDES metrics and LDES projects in 2025-6 with leading technology subsets for microgrid and similar applications. See scientific categories of LDES compared by 8 parameters, electrochemical LDES options compared but why most batteries will stay uncompetitive above 10-hour duration.

The report is balanced, realistic and independent so it has as Chapter 3. Microgrid LDES Escape Routes with 7 pages, mostly infograms and charts, covering the ways in which the demand for LDES in microgrids and similar applications down to houses will be reduced or avoided. That includes 2025 research advances including Home Energy Management Systems coping with intermittent supply.

Chapter 4. Advanced Pumped Hydro APHES (46 pages) combs through the many options avoiding pumping water up mountains. Here is pumping heavy, loaded water up mere hills, use of mines, the ocean and more. Many are suitable for the larger microgrid and similar applications but never solar buildings.

Chapter 5. Hydrogen H2ES and compressed air CAES for microgrid LDES (22 pages) examines these important options for grid LDES that are less impressive beyond but there are some microgrid projects appraised that use them. Learn the issues.

Chapter 6. Redox flow batteries RFB is 154 pages because this is currently the gold standard for microgrid and similar LDES, having the most installations, manufacturers and the strongest appropriate research pipeline, including for the more-compact hybrid RFBs. 45 manufacturers are appraised.

Chapter 7. Solid Gravity Energy Storage SGES has only 36 pages because it is a weaker contestant but five manufacturers examined and the various subsets have some prospects. Chapter 8. Advanced conventional construction batteries ACCB (48 pages) examines many emerging chemistries using conventional construction not flow battery principles. Much 2025 research is appraised. Many are fundamentally too expensive or too poor in certain performance parameters but there are possibilities too and successes to report.

Chapter 9. Liquefied Gas Energy Storage LGES: Liquid Air LAES or CO2 (43 pages) looks at this middle ground where extremely safe options using established technologies can provide LDES that has many competitive advantages for large microgrids and similar applications. LGES is more compact but pressurised carbon dioxide avoids the cryogenics. See appropriate projects, manufacturer intentions. The report then closes with Chapter 10. Thermal Energy Storage for Delayed Electricity ETES (22 pages). Delayed heat is a great success but there is less enthusiasm for thermally delayed electricity due to leakage, size and other issues. Nonetheless there is a project in Alaska and there are companies pursuing exotic forms such as thermophotovoltaics that are appraised. Learn the lessons of failures as well.

The Zhar Research report, "Long Duration Energy Storage for Datacenters, Microgrids, Houses: Technologies, Markets 2026-2036" is your essential reading for the latest research and balanced analysis of this large new opportunity. For these applications, it finds that redox flow batteries, liquid gas energy storage and some other options are the best compromises but different ones win at the extremes of AI datacenters and private houses 2026-2046.

CAPTION: LDES volumetric energy density kWh/cubic meter by technology 2026 and 2046. Source: Zhar Research report, "Long Duration Energy Storage for Datacenters, Microgrids, Houses: Technologies, Markets 2026-2036".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and unique scope of this report
  • 1.2. Methodology of this analysis
  • 1.3. Examples of current beyond-grid LDES and similar
  • 1.4. Technology basics
  • 1.5. 18 key conclusions concerning electrification and LDES definitions, needs, candidates
  • 1.6. Infogram: LDES volumetric energy density kWh/cubic meter by technology 2026 and 2046
  • 1.7. Infogram: Escape routes from microgrid and similar LDES 2026-2046
  • 1.8. Infogram: Off-grid solar house with LDES in 2036-46 - all-electric
  • 1.9. Some customer types and potential energy services from LDES
  • 1.10. Potential LDES performance by ten technologies in 19 columns
  • 1.11. Three LDES sizes, with different technology winners 2026-2046 on current evidence
  • 1.12. Acceptable sites: numbers by technology 2026-2046 showing microgrid opportunity
  • 1.13. Calculations of LDES need by technology with implications
  • 1.14. Current and emerging LDES duration vs power deliverable
    • 1.14.1. Current LDES situation in green and trend in grid need in blue: simplified version
    • 1.14.2. Duration hours vs power delivered by project and 12 technologies in 2026
  • 1.15. Nine SWOT appraisals of potential broadly-defined microgrid LDES technologies for 2026-2046
  • 1.16. Long Duration Energy Storage LDES roadmap 2026-2046
  • 1.17. Market forecasts in 24 lines 2026-2046 with graphs and explanation
    • 1.17.1. LDES total value market showing beyond-grid gaining share 2024-2046
    • 1.17.2. LDES market in 9 technology categories $ billion 2026-2046 table, graphs, explanation
    • 1.17.3. Total LDES value market % in three size categories 2026-2046 table, graph, explanation
    • 1.17.4. Regional share of LDES value market % in four regions 2026-2046 table, graph, explanation
    • 1.17.5. Number of LDES actual and putative manufacturers: RFB vs Other showing shakeout 2026-2046
    • 1.17.6. Vanadium vs iron vs other RFB LDES market % value sales with technology strategies 2026-2046
    • 1.17.7. RFB achievements and aspirations 2026-2046

2. LDES need and design principles

  • 2.1. Energy fundamentals
  • 2.2. Stationary energy storage and LDES fundamentals
    • 2.2.1. General
    • 2.2.2. Actual and proposed types of LDES
    • 2.2.3. Nine LDES technologies that can follow the market trend to longer duration with subsets compared
    • 2.2.4. Three sizes of grid and similar generator-user systems showing LDES potential
    • 2.2.5. Off-grid solar house LDES is toughest challenge but coming 2036-46
    • 2.2.6. LDES metrics
  • 2.3. LDES projects in 2025-6 showing leading technology subsets
  • 2.4. Scientific categories of LDES compared by 8 parameters
  • 2.5. Electrochemical LDES options explained
  • 2.6. Most batteries uncompetitive above 10-hour duration
  • 2.7. Grand overview report on all LDES 2026-2046

3. Microgrid LDES escape routes

  • 3.1. General situation
  • 3.2. Infogram: 13 escape routes from LDES 2026-2046
  • 3.3. Examples across the world: Denmark, Singapore, China, USA
  • 3.4. Capacity factor of wind, solar and options that need little or no LDES
  • 3.5. Extensive 2025 research on LDES escape routes
  • 3.6. Research in 2025 on Home Energy Management Systems coping with intermittent supply

4. Advanced pumped hydro APHES

  • 4.1. Overview
  • 4.2. Using mining sites
    • 4.2.1. Potential
    • 4.2.2. Research advances in 2025
  • 4.3. Pressurised underground: Quidnet Energy USA
  • 4.4. Using heavier water up mere hills: RheEnergise UK
    • 4.4.1. General
    • 4.4.2. RheEnergise installation progress 2025-6
    • 4.4.3. Power for mines and other targets with appraisal of prospects
  • 4.5. Using seawater or other brine
    • 4.5.1. General
    • 4.5.2. Brine in salt caverns Cavern Energy USA
    • 4.5.3. SWOT appraisal of seawater pumped hydro on land
  • 4.6. Sizeable Energy Italy, StEnSea Germany, Ocean Grazer Netherlands
    • 4.6.1. General
    • 4.6.2. Sizable Energy Itay
    • 4.6.3. StEnSea Germany
    • 4.6.4. Ocean Grazer Netherlands
    • 4.6.5. SWOT appraisal of underwater energy storage for LDES
  • 4.7. Hybrid technologies: research advances in 2024 and 2025
  • 4.8. Research advances in 2024 and 2025
  • 4.9. SWOT appraisal of APHES

5. Hydrogen H2ES and compressed air CAES for microgrid LDES

  • 5.1. Hydrogen H2ES
    • 5.1.1. Overview
    • 5.1.2. Calistoga Resiliency Centre USA 48-hour microgrid
    • 5.1.3. Ulm University microgrid trial Germany 2025-2027
    • 5.1.4. China plans 2025 and 2026
    • 5.1.5. New hydrogen storage methods and LDES relevance
  • 5.2. Compressed air CAES for microgrids
    • 5.2.1. Overview
    • 5.2.2. Augwind Energy Israel
    • 5.2.3. Keep Energy Systems UK
    • 5.2.4. LiGE Pty Ltd South Africa

6. Redox flow batteries RFB

  • 6.1. Overview
  • 6.2. RFB research pivoting to LDES
    • 6.2.1. Overview of RFB and its potential for LDES
    • 6.2.2. Infogram: RFB achievements and aspirations 2026-2046
    • 6.2.3. 72 RFB research advances in 2025
    • 6.2.4. 18 examples of RFB research advances in 2024
  • 6.3. Winning LDES redox flow battery technologies 2026-2046
  • 6.4. SWOT appraisal and parameter comparison of RFB for LDES
  • 6.5. 45 RFB companies compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment
  • 6.6. RFB technologies with research advances through 2025
    • 6.6.1. Regular or hybrid, their chemistries and the main ones being commercialised
    • 6.6.2. SWOT appraisals of regular vs hybrid options
  • 6.7. Specific designs by material: vanadium, iron and variants, other metal ligand, halogen-based, organic, manganese with 2025 research, three SWOT appraisals
    • 6.7.1. Vanadium RFB design and SWOT appraisal
    • 6.7.2. All-iron and variants RFB design and SWOT appraisal
  • 6.8. RFB manufacturer profiles
  • 6.9. Further research in 2025

7. Solid gravity energy storage SGES

  • 7.1. Overview including research in 2025
    • 7.1.1. General
    • 7.1.2. Three stages of operation
    • 7.1.3. Three geometries
    • 7.1.4. Pumped hydro gravity storage compared to the three SGES options
    • 7.1.5. Basics
    • 7.1.6. SWOT appraisal of solid gravity storage SGES for LDES
    • 7.1.7. Parameter appraisal of solid gravity energy storage SGES for LDES
    • 7.1.8. CAPEX challenge
    • 7.1.9. Challenge of ongoing expenses
    • 7.1.10. Possibility of pumping sand
    • 7.1.11. Hydraulic piston lift instead of cable: 2025 modelling
    • 7.1.12. Appraisal of other SGES research through 2025 and 2024
  • 7.2. ARES USA
  • 7.3. Energy Vault Switzerland, USA and China, India licensees
  • 7.4. Gravitricity
  • 7.5. Green Gravity Australia
  • 7.6. SinkFloatSolutions France

8. Advanced conventional construction batteries ACCB

  • 8.1. Overview
  • 8.2. Eight ACCB manufacturers compared: 8 columns: name, brand, technology, tech. readiness, beyond-grid focus, LDES focus, comment
  • 8.3. Parameter appraisal and SWOT appraisal of ACCB for LDES
    • 8.3.1. Parameter appraisal
    • 8.3.2. SWOT appraisal of ACCB for LDES
    • 8.3.3. Research appraisal published in 2025
  • 8.4. Metal-air batteries
    • 8.4.1. Iron-air with SWOT and 2025 research: Form Energy USA
    • 8.4.2. Aluminium-air : Phinergy Israel
    • 8.4.3. Zinc-air with SWOT: E-Zinc, AZA battery, Zinc8 (Abound)
  • 8.5. High temperature batteries
    • 8.5.1. Molten calcium antimony: Ambri USA out of business, SWOT
    • 8.5.2. Sodium or lithium sulfur: NGK/ BASF Japan/ Germany, others, research in 2025, SWOT
  • 8.6. Metal-ion batteries including Inlyte, Altris, HiNa, Tiamat, Natron, Faradion
    • 8.6.1. Sodium-ion with SWOT
    • 8.6.2. Zinc halide Eos Energy Enterprises USA with SWOT
    • 8.6.3. Zinc-ion Enerpoly, Urban Electric Power USA, NextEra USA
  • 8.7. Nickel hydrogen batteries: EnerVenue USA with SWOT

9. Liquefied gas energy storage LGES: Liquid air LAES or CO2

  • 9.1. Overview
  • 9.2. Liquid air LAES LDES
    • 9.2.1. Technology and research advances through 2025
    • 9.2.2. Parameter comparison of LAES for LDES
    • 9.2.3. SWOT appraisal of LAES for LDES
    • 9.2.4. Indicative LAES systems, footprints and operating parameters
    • 9.2.5. Research advances in 2025 and 2024
    • 9.2.6. CGDG, Zhongli Zhongke Energy Storage Technology Co China
    • 9.2.7. Highview Energy UK and partners Sumitomo, Centrica, Rio Tinto and others
    • 9.2.8. MIT study of LAES viability in USA
    • 9.2.9. Phelas Germany
  • 9.3. Liquid and compressed carbon dioxide LDES
    • 9.3.1. Overview
    • 9.3.2. Parameter comparison of CO2 for LDES
    • 9.3.3. SWOT appraisal of liquid CO2 for LDES
    • 9.3.4. Research advances in 2025
    • 9.3.5. Energy Dome Italy
    • 9.3.6. China and Kazakhstan

10. Thermal energy storage for delayed electricity ETES

  • 10.1. Overview and research advances in 2025
  • 10.2. Research advances in 2025 and 2024
  • 10.3. Lessons of failure: Siemens Gamesa, Azelio, Steisdal, Lumenion
  • 10.4. The heat engine approach proceeds: Echogen USA
  • 10.5. Use of extreme temperatures and photovoltaic conversion
    • 10.5.1. Antora USA
    • 10.5.2. Fourth Power USA
  • 10.6. Marketing delayed heat and electricity from one plant
    • 10.6.1. Overview
    • 10.6.2. MGA Thermal Australia
    • 10.6.3. Malta Inc Germany