長期間能源儲存
市場調查報告書
商品編碼
1865162

長期間能源儲存

Long-Duration Energy Storage - Emerging LDES Solutions: Global Market Analysis and Forecasts, 2025-2034

出版日期: | 出版商: Guidehouse Research | 英文 39 Pages | 訂單完成後即時交付

價格

長時儲能 (LDES) 日益被認為是安全、低碳能源系統的重要組成部分。隨著間歇性再生能源取代化石燃料發電,LDES 提供了平衡長期供需、維持電網穩定性以及進一步整合再生能源所需的靈活性。短時儲能系統主要應對小時波動,而 LDES 則支援多日甚至季節性需求,從而減少對化石燃料調峰電廠的依賴,並在長時間停電期間增強關鍵基礎設施的韌性。這些優勢使 LDES 成為實現脫碳和能源安全目標的基礎技術。

本報告分析了未來十年全球 LDES 系統市場,重點關注新興技術及其商業化成熟度。

由於除抽水蓄能以外的許多其他儲能方案仍處於部署初期,且在成本、可擴展性和市場設計方面面臨獨特的挑戰,因此本分析重點關注技術成熟度等級 (TRL) 以及政策支援在推動近期應用方面的作用。容量和收入預測是基於 Guidehouse Research 的儲能系統追蹤器中的專案層級資料。預計到 2034 年,全球累計低密度儲能系統 (LDES) 容量(不包括抽水蓄能)將達到 439.4 吉瓦時。

儘管人們對低密度儲能系統的興趣日益濃厚,但其商業可行性仍然受到高昂的前期成本、不確定的收入來源以及不完善的市場結構(無法進行長期靈活性評估)的限制。監管的複雜性、審批延遲和電網整合方面的挑戰增加了額外的風險,而缺乏標準化的性能指標則使專案評估更加複雜。許多技術仍在從試點階段向商業部署階段過渡,這使得建立可行的商業模式變得困難。市場設計是最大的障礙,如果沒有明確的經濟訊號和長期激勵措施,即使技術需求旺盛,投資也會受到限制。因此,持續的政策支持對於未來十年實現市場成長至關重要。

目錄

第1章 摘要整理

第2章 市場問題

  • 簡介
  • LDES技術
    • 電化學
    • 環境熱能
    • 機器
  • 促進因素
    • 脫碳、再生能源併網和電力系統韌性
    • 政策支持、激勵措施與監管機制
    • 市場需求與投資
  • 障礙
    • 成本競爭力與技術競爭
    • 收入來源與市場結構
    • 技術成熟度、可擴展性和部署限制因素

第3章 產業價值鏈

  • 競爭格局與投資活動
  • 價格設定和經營模式
  • 技術的準備

第4章 市場預測

第5章 結論·建議

  • 三大要點
  • 推薦事項
    • 政策籌劃者和法規當局
    • LDES供應商
    • 投資者和金融機關
    • 公共產業及供電網運用者
    • 超大規模資料中心業者以及其他的大規模能源用戶

第6章 縮寫與簡稱一覽

第7章 目錄

第8章 圖表

第9章 調查範圍,資訊來源,調查手法及註解

Product Code: MF-LDES-25

Long-duration energy storage (LDES) is increasingly recognized as a vital component of a secure, low-carbon energy system. As fossil-based generation gives way to intermittent renewable power, LDES provides the flexibility needed to balance supply and demand over extended periods, maintain grid stability, and enable deeper renewable integration. Unlike short-duration systems, which typically address hourly fluctuations, LDES can support multiday or seasonal needs, reduce reliance on fossil peaker plants, and deliver resilience for critical facilities during prolonged outages. These capabilities position LDES as a foundational technology for achieving decarbonization and energy security goals.

This report analyzes the global market for LDES systems over the next decade with a particular focus on emerging technologies and their readiness for commercialization. Because most non-pumped hydro options are still early in deployment and face distinct challenges around cost, scalability, and market design, the analysis emphasizes technology readiness level (TRL) and the role of policy support in shaping near-term adoption. Capacity and revenue forecasts are based on project-level data from Guidehouse Research's Energy Storage Systems Tracker. Global cumulative LDES capacity (excluding pumped hydro) is expected to reach 439.4 GWh by 2034.

Despite growing interest, commercial viability remains constrained by high upfront costs, uncertain revenue streams, and inadequate market structures that fail to value long-duration flexibility. Regulatory complexity, permitting delays, and grid connection challenges add further risk, while the absence of standardized performance metrics complicates project evaluation. Many technologies are still scaling from pilot to commercial deployment, making it difficult to establish bankable business models. Market design remains the most critical barrier: without clear economic signals and long-term incentives, investment will be limited despite technical need. Sustained policy support will therefore be essential to enable market growth over the next decade.

Table of Contents

1. Executive Summary

2. Market Issues

  • 2.1 Introduction
  • 2.2 LDES Technologies
    • 2.2.1 Electrochemical
      • 2.2.1.1 Flow Batteries
      • 2.2.1.2 Iron-Air Batteries
    • 2.2.2 Thermal
    • 2.2.3 Mechanical
      • 2.2.3.1 Pumped Hydro
      • 2.2.3.2 CAES
      • 2.2.3.3 LAES
  • 2.3 Drivers
    • 2.3.1 Decarbonization, Renewable Integration, and Grid Resilience
    • 2.3.2 Policy Support, Incentives, and Regulatory Mechanisms
    • 2.3.3 Market Demand and Investment
  • 2.4 Barriers
    • 2.4.1 Cost-Competitiveness and Technology Competition
    • 2.4.2 Revenue Generation and Market Structure
    • 2.4.3 Technological Maturity, Scalability, and Deployment Constraints

3. Industry Value Chain

  • 3.1 Competitive Landscape and Investment Activity
  • 3.2 Pricing and Business Models
  • 3.3 Technology Readiness

4. Market Forecasts

  • 4.1 Methodology
  • 4.2 Global Forecasts
    • 4.2.1 Capacity
    • 4.2.2 Revenue

5. Conclusions and Recommendations

  • 5.1 Three Big Takeaways
  • 5.2 Recommendations
    • 5.2.1 Policymakers and Regulators
    • 5.2.2 LDES Providers
    • 5.2.3 Investors and Financial Institutions
    • 5.2.4 Utilities and Grid Operators
    • 5.2.5 Hyperscalers and Other Large Energy Users

6. Acronym and Abbreviation List

7. Table of Contents

8. Table of Charts and Figures

9. Scope of Study, Sources, Methodology and Notes

List of Tables

  • Table 2-1. LDES Technology Summary
  • Table 2-2. 2030 Cost Outlook for LDES Technologies Relative to Li-ion Systems

List of Figures

  • Chart 1-1. Annual LDES Capacity Additions by Region, World Markets: 2025-2034
  • Chart 4-1. Annual LDES Capacity Additions by Region, World Markets: 2025-2034
  • Chart 4-2. Cumulative LDES Capacity by Region, World Markets: 2025-2034
  • Chart 4-3. Annual LDES Capacity Additions by Technology, World Markets: 2025-2034
  • Chart 4-4. Cumulative LDES Capacity by Technology, World Markets: 2025-2034
  • Chart 4-5. Annual LDES Revenue by Region, World Markets: 2025-2034
  • Chart 4-6. Annual LDES Revenue by Technology, World Markets: 2025-2034
  • Figure 3-1. Example LDES Developers by TRL and Technology Category