封面
市場調查報告書
商品編碼
1914607

汽車人工智慧(AI)市場-全球產業規模、佔有率、趨勢、機會及預測(按組件、技術、工藝、應用、車輛類型、需求類別、地區和競爭格局分類,2021-2031)

Automotive Artificial Intelligence, Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Technology, By Process, By Application, By Vehicle Type, By Demand Category, By Region & Competition, 2021-2031F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

全球汽車人工智慧 (AI) 市場預計將從 2025 年的 48.8 億美元成長到 2031 年的 202.2 億美元,複合年成長率為 26.73%。

該領域涉及將機器學習演算法、電腦視覺和數據分析技術整合到車輛中,以實現自動駕駛、預測性維護和智慧車載功能。其成長主要受嚴格的安全法規驅動,這些法規強制要求配備高級駕駛輔助系統 (ADAS),以及產業向需要持續更新的軟體定義架構轉型。為了說明對智慧軟體的依賴性,汽車製造商和英國協會 (SMMT) 的報告顯示,到 2024 年,83.6% 的新車將能夠配備駕駛輔助技術。

市場概覽
預測期 2027-2031
市場規模:2025年 48.8億美元
市場規模:2031年 202.2億美元
複合年成長率:2026-2031年 26.73%
成長最快的細分市場 深度學習
最大的市場 北美洲

儘管取得了這些進展,但市場仍面臨著與網路安全和資料管治複雜性相關的重大障礙。隨著汽車逐漸演變為能夠處理大量個人和環境數據以改進人工智慧模型的互聯設備,如何在遵守各項國際隱私法規的同時保護汽車免受網路威脅,對製造商而言是一項技術難度高且成本高昂的挑戰。在業界努力平衡創新與合規性的過程中,確保強大的資料保護仍然是阻礙市場進一步擴張的一大障礙。

市場促進因素

向軟體定義汽車的轉型需要整合高性能人工智慧運算,以控制中央電子單元並實現流暢的空中升級。隨著汽車製造商將軟體和硬體分離,人工智慧對於推動功能升級和管理未來車隊中複雜的區域架構至關重要,這將迫使傳統製造商在專有軟體方面投入巨資,以與數位原生企業競爭。大眾汽車集團與Rivian於2024年6月宣布成立的合資企業清晰地體現了這一趨勢。這家汽車巨頭承諾投資高達50億美元,用於共同開發下一代軟體定義平台,凸顯了其對以軟體為中心的出行解決方案的高度重視。

同時,對自動駕駛和半自動駕駛能力的追求正在加速深度學習模型的應用,這些模型能夠解讀即時感測器數據。車輛在無需人為干預的情況下在城市環境中行駛的能力完全依賴於電腦視覺和決策演算法的成熟度,而這些演算法如今正逐步走向商業化。例如,Waymo在2024年8月的一篇部落格報導中宣布,其自動駕駛出行服務已達到每週超過10萬次付費行程的里程碑,證明了人工智慧驅動駕駛的可行性。此外,支援這些系統的底層軟體也在全球範圍內不斷擴展。 2024年,黑莓宣布,其安全認證的QNX軟體(為眾多ADAS(高級駕駛輔助系統)和數位駕駛座系統提供支援)目前已在全球超過2.35億輛汽車中部署。

市場挑戰

網路安全和資料管治的複雜性對全球汽車人工智慧 (AI) 市場的成長構成了重大障礙。隨著汽車發展成為處理海量資料集的超互聯節點,它們也成為網路攻擊的主要目標,需要複雜的防禦機制。這不可避免地會延緩研發週期。製造商面臨著保護 AI 模型免受惡意攻擊的技術挑戰,同時也要應對錯綜複雜的國際隱私法律。這種雙重壓力迫使汽車公司將大量資金和工程人才從 AI 創新轉移到合規和安全保障,從而減緩了市場發展勢頭。

這種日益加重的營運負擔體現在為保障車輛網路安全而需要加強的產業協作。 2024年,汽車資訊共用與分析中心(Auto-ISAC)報告稱,首席資訊安全安全官(CISO)執行工作小組的參與人數同比成長20%,凸顯了重新分配領導資源以應對這些漏洞的至關重要性。這種必要的防禦態勢限制了製造商實現下一代人工智慧功能商業化和部署的速度。

市場趨勢

將生成式人工智慧整合到高級個人助理中,正從根本上重塑車載使用者體驗,將語音命令系統轉變為直覺的對話式介面。與受限於固定腳本的傳統系統不同,這些基於大規模語言模型的解決方案利用深度語義理解來處理自然語音、管理複雜查詢,並具備情境感知能力來控制車輛功能。這項技術使駕駛員能夠像與智慧夥伴互動一樣與車輛互動,車輛能夠朗讀調查內容並透過對話管理導航。例如,大眾汽車在2024年1月的新聞稿中宣布,它將成為首家從2024年第二季度開始在其量產車型中將ChatGPT作為標準配置的大規模生產汽車製造商,這便是該技術快速部署的一個例證。

同時,人工智慧驅動的數位雙胞胎技術在製造業領域的應用正在革新汽車生產,實現數據驅動、超高效的工廠運作。透過建立實體組裝和供應鏈的即時虛擬副本,製造商可以模擬生產場景、最佳化工作流程,並在瓶頸影響實際生產之前將其識別出來。這種工業元宇宙方法能夠精確監控設備和能源消耗,顯著降低廢棄物和營運成本,並加快產品上市速度。例如,雷諾集團在2024年11月的一篇報導中指出,自2019年以來,該公司已在300多個計劃中應用了數位雙胞胎技術,累計節省成本達7億歐元。

目錄

第1章概述

第2章調查方法

第3章執行摘要

第4章:客戶評價

第5章:全球汽車人工智慧(AI)市場展望

  • 市場規模及預測
    • 按金額
  • 市佔率及預測
    • 按組件(硬體、軟體、服務)
    • 透過科技(深度學習、機器學習、情境察覺、電腦視覺、自然語言處理等)
    • 按過程(訊號辨識、影像識別、資料探勘)
    • 按應用領域(人機互動、半自動駕駛、自動駕駛)
    • 依車輛類型(乘用車與商用車)分類
    • 依需求類別(OEM 與售後市場)
    • 按地區
    • 按公司(2025 年)
  • 市場地圖

6. 北美汽車人工智慧(AI)市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 北美洲:國家分析
    • 美國
    • 加拿大
    • 墨西哥

7. 歐洲汽車人工智慧(AI)市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙

8. 亞太地區汽車人工智慧(AI)市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

9. 中東和非洲汽車人工智慧(AI)市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非

第10章:南美汽車人工智慧(AI)市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷

第11章 市場動態

  • 促進要素
  • 任務

第12章 市場趨勢與發展

  • 併購
  • 產品發布
  • 最新進展

第13章 全球汽車人工智慧(AI)市場:SWOT分析

第14章:波特五力分析

  • 產業競爭
  • 新進入者的可能性
  • 供應商電力
  • 顧客權力
  • 替代品的威脅

第15章 競爭格局

  • NVIDIA Corporation
  • Tesla, Inc.
  • Waymo LLC
  • Intel Corporation
  • Qualcomm Technologies, Inc.
  • Robert Bosch GmbH
  • Aptiv PLC
  • Continental AG
  • Microsoft Corporation
  • Toyota Motor Corporation

第16章 策略建議

第17章:關於研究公司及免責聲明

簡介目錄
Product Code: 1331

The Global Automotive Artificial Intelligence (AI) Market is projected to expand from USD 4.88 Billion in 2025 to USD 20.22 Billion by 2031, reflecting a compound annual growth rate of 26.73%. This sector encompasses the incorporation of machine learning algorithms, computer vision, and data analytics into vehicles to facilitate autonomous driving, predictive maintenance, and intelligent in-cabin features. Growth is primarily stimulated by strict safety regulations mandating Advanced Driver-Assistance Systems (ADAS) and the industry's pivot toward software-defined architectures that require continuous updates. Highlighting this reliance on intelligent software, the Society of Motor Manufacturers and Traders reported that in 2024, 83.6% of new automobiles were available with driver assistance technologies.

Market Overview
Forecast Period2027-2031
Market Size 2025USD 4.88 Billion
Market Size 2031USD 20.22 Billion
CAGR 2026-203126.73%
Fastest Growing SegmentDeep Learning
Largest MarketNorth America

Despite these advancements, the market faces a substantial hurdle regarding the complexities of cybersecurity and data governance. As automobiles transform into connected devices processing vast amounts of personal and environmental data to refine AI models, securing them against cyber threats while complying with disparate international privacy regulations proves to be a technically demanding and expensive challenge for manufacturers. Ensuring robust data protection remains a critical obstacle impeding broader market expansion as the industry strives to balance innovation with compliance.

Market Driver

The transition toward software-defined vehicles requires the integration of high-performance AI computing to control centralized electronic units and enable smooth over-the-air updates. As automakers separate software from hardware, AI becomes critical for facilitating feature upgrades and overseeing complex zonal architectures in future fleets, forcing legacy manufacturers to invest heavily in proprietary software to rival digital-native competitors. This trend is exemplified by the Volkswagen Group's June 2024 announcement regarding its joint venture with Rivian, where the automotive giant pledged up to $5 billion to codevelop next-generation software-defined platforms, emphasizing the significant financial prioritization of software-centric mobility solutions.

Concurrently, the push for autonomous and semi-autonomous capabilities is accelerating the adoption of deep learning models capable of interpreting real-time sensor data. A vehicle's ability to navigate urban environments without human intervention depends entirely on the maturity of computer vision and decision-making algorithms, which are now reaching commercial scale. For instance, Waymo reported in an August 2024 blog post that its autonomous ride-hailing service had achieved a milestone of over 100,000 paid trips weekly, proving the viability of AI-piloted transport. Furthermore, the foundational software supporting these systems is expanding globally; BlackBerry Limited noted in 2024 that its safety-certified QNX software, utilized in many ADAS and digital cockpit systems, is now embedded in over 235 million vehicles worldwide.

Market Challenge

The intricate nature of cybersecurity and data governance presents a significant barrier to the growth of the Global Automotive Artificial Intelligence (AI) Market. As vehicles evolve into hyper-connected nodes processing immense datasets, they become prime targets for cyberattacks, necessitating complex defense mechanisms that inevitably slow down development cycles. Manufacturers are burdened with the technical challenge of securing AI models against adversarial threats while simultaneously navigating a labyrinth of fragmented international privacy laws. This dual pressure compels automotive companies to divert significant capital and engineering talent from AI innovation toward compliance and security assurance, thereby retarding market momentum.

The escalating scale of this operational burden is evident in the industry's intensified collaborative efforts to secure vehicle networks. In 2024, the Automotive Information Sharing and Analysis Center (Auto-ISAC) reported a 20% increase in participation within its Chief Information Security Officer (CISO) Executive Working Group compared to the previous year, highlighting the critical reallocation of leadership resources to address these vulnerabilities. This necessary defensive posture limits the speed at which manufacturers can successfully monetize and deploy next-generation AI features.

Market Trends

The integration of Generative AI for Advanced Personal Assistants is fundamentally reshaping the in-cabin user experience by transforming voice command systems into intuitive, conversational interfaces. Unlike legacy systems restricted to rigid scripts, these large language model-based solutions utilize deep semantic understanding to process natural speech, manage complex queries, and control vehicle functions with context awareness. This technology allows drivers to interact with their vehicles as intelligent companions capable of reading research content or managing navigation through dialogue. Illustrating this rapid deployment, Volkswagen announced in a January 2024 press release that it would be the first volume automaker to offer ChatGPT as a standard feature in production vehicles starting in the second quarter of 2024.

Simultaneously, the development of AI-Powered Digital Twins for Manufacturing is revolutionizing automotive production by enabling data-driven, hyper-efficient factory operations. By constructing real-time virtual replicas of physical assembly lines and supply chains, manufacturers can simulate production scenarios and optimize workflows to identify bottlenecks before they impact actual output. This industrial metaverse approach allows for precise monitoring of equipment and energy consumption, significantly reducing waste and operational costs while accelerating time-to-market. Highlighting the efficacy of this trend, Renault Group reported in a November 2024 article that its deployment of digital twin technologies across over 300 projects has yielded cumulative savings of €700 million since 2019.

Key Market Players

  • NVIDIA Corporation
  • Tesla, Inc.
  • Waymo LLC
  • Intel Corporation
  • Qualcomm Technologies, Inc.
  • Robert Bosch GmbH
  • Aptiv PLC
  • Continental AG
  • Microsoft Corporation
  • Toyota Motor Corporation

Report Scope

In this report, the Global Automotive Artificial Intelligence (AI) Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Artificial Intelligence (AI) Market, By Component

  • Hardware
  • Software
  • Service

Automotive Artificial Intelligence (AI) Market, By Technology

  • Deep Learning
  • Machine Learning
  • Context Awareness
  • Computer Vision
  • Natural Language Processing
  • Others

Automotive Artificial Intelligence (AI) Market, By Process

  • Signal Recognition
  • Image Recognition
  • Data Mining

Automotive Artificial Intelligence (AI) Market, By Application

  • Human-Machine Interface
  • Semi-autonomous Driving
  • Autonomous Driving

Automotive Artificial Intelligence (AI) Market, By Vehicle Type

  • Passenger Cars v/s Commercial Vehicles

Automotive Artificial Intelligence (AI) Market, By Demand Category

  • OEM v/s Aftermarket

Automotive Artificial Intelligence (AI) Market, By Region

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Artificial Intelligence (AI) Market.

Available Customizations:

Global Automotive Artificial Intelligence (AI) Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Automotive Artificial Intelligence (AI) Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Hardware, Software, Service)
    • 5.2.2. By Technology (Deep Learning, Machine Learning, Context Awareness, Computer Vision, Natural Language Processing, Others)
    • 5.2.3. By Process (Signal Recognition, Image Recognition, Data Mining)
    • 5.2.4. By Application (Human-Machine Interface, Semi-autonomous Driving, Autonomous Driving)
    • 5.2.5. By Vehicle Type (Passenger Cars v/s Commercial Vehicles)
    • 5.2.6. By Demand Category (OEM v/s Aftermarket)
    • 5.2.7. By Region
    • 5.2.8. By Company (2025)
  • 5.3. Market Map

6. North America Automotive Artificial Intelligence (AI) Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Technology
    • 6.2.3. By Process
    • 6.2.4. By Application
    • 6.2.5. By Vehicle Type
    • 6.2.6. By Demand Category
    • 6.2.7. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Process
        • 6.3.1.2.4. By Application
        • 6.3.1.2.5. By Vehicle Type
        • 6.3.1.2.6. By Demand Category
    • 6.3.2. Canada Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Process
        • 6.3.2.2.4. By Application
        • 6.3.2.2.5. By Vehicle Type
        • 6.3.2.2.6. By Demand Category
    • 6.3.3. Mexico Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Process
        • 6.3.3.2.4. By Application
        • 6.3.3.2.5. By Vehicle Type
        • 6.3.3.2.6. By Demand Category

7. Europe Automotive Artificial Intelligence (AI) Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Technology
    • 7.2.3. By Process
    • 7.2.4. By Application
    • 7.2.5. By Vehicle Type
    • 7.2.6. By Demand Category
    • 7.2.7. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Process
        • 7.3.1.2.4. By Application
        • 7.3.1.2.5. By Vehicle Type
        • 7.3.1.2.6. By Demand Category
    • 7.3.2. France Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Process
        • 7.3.2.2.4. By Application
        • 7.3.2.2.5. By Vehicle Type
        • 7.3.2.2.6. By Demand Category
    • 7.3.3. United Kingdom Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Process
        • 7.3.3.2.4. By Application
        • 7.3.3.2.5. By Vehicle Type
        • 7.3.3.2.6. By Demand Category
    • 7.3.4. Italy Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Process
        • 7.3.4.2.4. By Application
        • 7.3.4.2.5. By Vehicle Type
        • 7.3.4.2.6. By Demand Category
    • 7.3.5. Spain Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Process
        • 7.3.5.2.4. By Application
        • 7.3.5.2.5. By Vehicle Type
        • 7.3.5.2.6. By Demand Category

8. Asia Pacific Automotive Artificial Intelligence (AI) Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Technology
    • 8.2.3. By Process
    • 8.2.4. By Application
    • 8.2.5. By Vehicle Type
    • 8.2.6. By Demand Category
    • 8.2.7. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Process
        • 8.3.1.2.4. By Application
        • 8.3.1.2.5. By Vehicle Type
        • 8.3.1.2.6. By Demand Category
    • 8.3.2. India Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Process
        • 8.3.2.2.4. By Application
        • 8.3.2.2.5. By Vehicle Type
        • 8.3.2.2.6. By Demand Category
    • 8.3.3. Japan Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Process
        • 8.3.3.2.4. By Application
        • 8.3.3.2.5. By Vehicle Type
        • 8.3.3.2.6. By Demand Category
    • 8.3.4. South Korea Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Process
        • 8.3.4.2.4. By Application
        • 8.3.4.2.5. By Vehicle Type
        • 8.3.4.2.6. By Demand Category
    • 8.3.5. Australia Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Process
        • 8.3.5.2.4. By Application
        • 8.3.5.2.5. By Vehicle Type
        • 8.3.5.2.6. By Demand Category

9. Middle East & Africa Automotive Artificial Intelligence (AI) Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Technology
    • 9.2.3. By Process
    • 9.2.4. By Application
    • 9.2.5. By Vehicle Type
    • 9.2.6. By Demand Category
    • 9.2.7. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Process
        • 9.3.1.2.4. By Application
        • 9.3.1.2.5. By Vehicle Type
        • 9.3.1.2.6. By Demand Category
    • 9.3.2. UAE Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Process
        • 9.3.2.2.4. By Application
        • 9.3.2.2.5. By Vehicle Type
        • 9.3.2.2.6. By Demand Category
    • 9.3.3. South Africa Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Process
        • 9.3.3.2.4. By Application
        • 9.3.3.2.5. By Vehicle Type
        • 9.3.3.2.6. By Demand Category

10. South America Automotive Artificial Intelligence (AI) Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Process
    • 10.2.4. By Application
    • 10.2.5. By Vehicle Type
    • 10.2.6. By Demand Category
    • 10.2.7. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Process
        • 10.3.1.2.4. By Application
        • 10.3.1.2.5. By Vehicle Type
        • 10.3.1.2.6. By Demand Category
    • 10.3.2. Colombia Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Process
        • 10.3.2.2.4. By Application
        • 10.3.2.2.5. By Vehicle Type
        • 10.3.2.2.6. By Demand Category
    • 10.3.3. Argentina Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Process
        • 10.3.3.2.4. By Application
        • 10.3.3.2.5. By Vehicle Type
        • 10.3.3.2.6. By Demand Category

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Global Automotive Artificial Intelligence (AI) Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. NVIDIA Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Products & Services
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel
    • 15.1.5. SWOT Analysis
  • 15.2. Tesla, Inc.
  • 15.3. Waymo LLC
  • 15.4. Intel Corporation
  • 15.5. Qualcomm Technologies, Inc.
  • 15.6. Robert Bosch GmbH
  • 15.7. Aptiv PLC
  • 15.8. Continental AG
  • 15.9. Microsoft Corporation
  • 15.10. Toyota Motor Corporation

16. Strategic Recommendations

17. About Us & Disclaimer