![]() |
市場調查報告書
商品編碼
1876578
汽車神經處理單元(NPU)市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)Automotive Neural Processing Unit (NPU) Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球汽車神經處理單元 (NPU) 市場價值為 22 億美元,預計到 2034 年將以 21.5% 的複合年成長率成長至 171 億美元。

神經網路處理單元 (NPU) 在車輛中的廣泛應用正在革新智慧出行,使汽車能夠即時處理海量感測器資料、解讀周圍環境並快速執行數據驅動的決策。這些專用晶片為高級駕駛輔助系統 (ADAS)、自動駕駛汽車和車內智慧系統等深度學習應用提供強大支持,顯著提升安全性、能源最佳化和駕駛舒適性。汽車製造商和一級供應商正在設計支援預測分析、低延遲資料融合和即時車輛決策的下一代運算架構。持續向電氣化和互聯轉型進一步加速了 NPU 在預測性能量控制、進階電池管理和車網互動協調方面的應用。這些處理器還能透過學習環境條件和駕駛行為,改善電動車的路線最佳化和續航里程預測。 NPU 與邊緣運算和雲端運算的整合實現了空中下載 (OTA) 更新、智慧診斷和遠端最佳化,從而加強了永續發展。 COVID-19 疫情也加速了汽車價值鏈的數位轉型,製造商越來越依賴人工智慧、模擬和遠端診斷來確保生產的韌性,並開發具有邊緣人工智慧的自癒汽車系統。
| 市場範圍 | |
|---|---|
| 起始年份 | 2024 |
| 預測年份 | 2025-2034 |
| 起始值 | 22億美元 |
| 預測值 | 171億美元 |
| 複合年成長率 | 21.5% |
2024年,硬體部分佔據了68%的市場佔有率,預計到2034年將以20.5%的複合年成長率成長。硬體持續主導市場,因為神經網路處理器(NPU)是基於人工智慧的車輛運算的核心。 NPU整合在先進的處理器和系統級晶片(SoC)中,能夠實現高速、低延遲的平行資料處理,這對於高級駕駛輔助系統(ADAS)、自動駕駛和資訊娛樂系統至關重要。汽車製造商正大力投資硬體創新,以支援車輛生態系統內高效的即時決策,從而最大限度地減少對雲端連接的依賴,並提高邊緣運算效率。
邊緣處理領域在2024年佔據了69%的市場佔有率,預計從2025年到2034年將以20.6%的複合年成長率成長。基於邊緣的AI處理正日益受到重視,因為它允許車輛直接在車載端處理海量資料,從而減少延遲,並確保在駕駛員監控、物體檢測和導航等關鍵安全應用中更快地做出決策。透過減少對外部網路的依賴,邊緣NPU在各種連接條件下都能提供更高的性能、可靠性和響應速度,從而鞏固了其作為智慧車輛設計關鍵組件的地位。
預計到2024年,中國汽車神經網路處理器(NPU)市場將佔據37%的市場佔有率,市場規模將達到4.239億美元。中國在智慧和自動駕駛汽車技術領域的快速發展使其成為重要的成長中心。政府的支持性措施和國家政策鼓勵了國內半導體創新和人工智慧硬體的本土化。中國領先的科技公司正在設計用於即時感測器融合、感知和自主控制的車規級NPU,進一步增強了區域競爭力,並降低了汽車人工智慧運算領域對外國技術的依賴。
全球汽車神經處理器 (NPU) 市場的主要參與者包括英偉達 (NVIDIA)、特斯拉 (Tesla)、AMD、瑞薩電子 (Renesas)、英特爾 (Intel,旗下品牌 Mobileye)、恩智浦半導體 (NXP)、海洛 (Hailo)、亞馬遜 (Amazon)、IBM 和高通公司 (QuIBcomm)。為了鞏固自身地位,汽車神經處理器產業的公司正致力於開發高性能、高能源效率的晶片組,以支援下一代自動駕駛和連網汽車應用。許多公司正與領先的汽車製造商和一級供應商建立合作關係,將他們的 NPU 整合到車輛控制系統和高級駕駛輔助系統 (ADAS) 平台中。研發投資正集中於推進邊緣人工智慧運算、最佳化深度學習演算法以及增強晶片的可擴展性,以應對複雜的汽車工作負載。此外,半導體製造商正在擴大產能,並專注於軟硬體協同設計,以確保其產品能夠靈活部署到電動車和自動駕駛車隊。
The Global Automotive Neural Processing Unit (NPU) Market was valued at USD 2.2 billion in 2024 and is estimated to grow at a CAGR of 21.5% to reach USD 17.1 billion by 2034.

The expanding use of NPUs in vehicles is revolutionizing intelligent mobility by enabling cars to process vast sensor data in real time, interpret their surroundings, and execute rapid, data-driven decisions. These specialized chips power deep learning applications for advanced driver-assistance systems (ADAS), autonomous vehicles, and in-cabin intelligence, significantly enhancing safety, energy optimization, and driving comfort. Automotive manufacturers and Tier-1 suppliers are designing next-generation computing architectures that support predictive analytics, low-latency data fusion, and real-time vehicle decision-making. The ongoing shift toward electrification and connected mobility has further accelerated NPU adoption for predictive energy control, advanced battery management, and vehicle-to-grid coordination. These processors also improve route optimization and range prediction in electric vehicles by learning from environmental conditions and driver behavior. Integration of NPUs with edge and cloud computing enables over-the-air (OTA) updates, intelligent diagnostics, and remote optimization, strengthening sustainability efforts. The COVID-19 pandemic also sped up digital transformation in the automotive value chain, as manufacturers increasingly relied on AI, simulation, and remote diagnostics to ensure production resilience and develop self-healing automotive systems with AI at the edge.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $2.2 Billion |
| Forecast Value | $17.1 Billion |
| CAGR | 21.5% |
The hardware segment held a 68% share in 2024 and is projected to grow at a CAGR of 20.5% through 2034. Hardware continues to dominate the market because NPUs are at the heart of AI-based vehicle computing. Integrated within advanced processors and SoCs, they enable high-speed, low-latency, parallel data processing essential for ADAS, autonomous driving, and infotainment systems. Automakers are heavily investing in hardware innovation to support efficient, real-time decision-making directly within the vehicle ecosystem, minimizing reliance on cloud connectivity and improving processing efficiency at the edge.
The edge processing segment held a 69% share in 2024 and is estimated to grow at a CAGR of 20.6% from 2025 to 2034. Edge-based AI processing is gaining prominence because it allows vehicles to process large data volumes directly on board, reducing delays and ensuring faster decision-making in critical safety applications such as driver monitoring, object detection, and navigation. By reducing dependence on external networks, edge NPUs deliver improved performance, reliability, and responsiveness under varying connectivity conditions, reinforcing their role as a vital component in intelligent vehicle design.
China Automotive Neural Processing Unit (NPU) Market held a 37% share and generated USD 423.9 million in 2024. The country's rapid progress in intelligent and self-driving vehicle technologies has positioned it as a major growth hub. Supportive government initiatives and national policies have encouraged domestic semiconductor innovation and AI hardware localization. Leading Chinese technology firms are designing automotive-grade NPUs for real-time sensor fusion, perception, and autonomous control, further strengthening regional competitiveness and reducing foreign dependency in automotive AI computing.
Key players operating in the Global Automotive Neural Processing Unit (NPU) Market include NVIDIA, Tesla, AMD, Renesas, Intel (Mobileye), NXP, Hailo, Amazon, IBM, and Qualcomm. To strengthen their position, companies in the automotive neural processing unit industry are focusing on developing high-performance, energy-efficient chipsets that support next-generation autonomous and connected vehicle applications. Many firms are forming partnerships with leading automakers and Tier-1 suppliers to integrate their NPUs into vehicle control systems and ADAS platforms. R&D investments are being directed toward advancing edge AI computing, optimizing deep learning algorithms, and enhancing chip scalability for complex automotive workloads. Moreover, semiconductor manufacturers are expanding production capabilities and focusing on software-hardware co-design to ensure flexible deployment across EVs and autonomous fleets.