![]() |
市場調查報告書
商品編碼
1871095
汽車人工智慧處理器市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)Automotive AI Processors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球汽車人工智慧處理器市場價值為 56 億美元,預計到 2034 年將以 20.5% 的複合年成長率成長至 335 億美元。

由於人工智慧在現代車輛中日益普及,應用於高級駕駛輔助系統 (ADAS)、自動駕駛、車載資訊娛樂系統和預測性維護等領域,市場正經歷快速成長。這些人工智慧處理器在保持能源效率和低延遲的同時,還能提供卓越的運算性能,使車輛能夠做出對安全性和自動化至關重要的即時決策。隨著汽車製造商擴大將人工智慧和機器學習技術嵌入車輛,對能夠進行大規模資料處理、模型訓練和推理的處理器的需求持續成長。主要晶片開發商正致力於開發汽車級軟體開發工具包 (SDK)、人工智慧框架和認證項目,以支援原始設備製造商 (OEM) 和一級供應商設計智慧系統。電動車和連網汽車的日益普及進一步加速了對能夠處理大量即時感測器和攝影機資料的人工智慧處理器的需求。混合型車載和雲端人工智慧架構正逐漸成為標準,尤其是在物流和公共交通等系統最佳化和安全合規性至關重要的行業。
| 市場範圍 | |
|---|---|
| 起始年份 | 2024 |
| 預測年份 | 2025-2034 |
| 起始值 | 56億美元 |
| 預測值 | 335億美元 |
| 複合年成長率 | 20.5% |
到2024年,圖形處理器(GPU)市場佔有率預計將達到38%,這主要得益於其無與倫比的平行運算能力,而這對於自動導航、感測器融合和感知任務至關重要。汽車製造商正日益依賴基於GPU的AI處理器來提升深度學習和電腦視覺的效能。 GPU能夠同時處理多個資料流,進而加快推理速度,提高模型精度,並縮短下一代汽車系統的上市時間。
到2024年,ADAS(高級駕駛輔助系統)市佔率將達到42%。其成長主要源自於乘用車和商用車中安全和自動化功能的日益整合,例如自適應巡航控制、車道維持輔助和碰撞避免技術。車輛安全監管要求的提高以及消費者對半自動駕駛日益成長的興趣,正在加速推動對ADAS系統的需求。人工智慧處理器作為這些系統的運算核心,負責即時資料解讀和決策,進而提升駕駛和乘客的安全。
美國汽車人工智慧處理器市場預計在2024年達到20億美元。美國強大的技術基礎,加上電動車和自動駕駛汽車的快速發展,持續推動巨大的市場需求。對邊緣運算、人工智慧開發工具和車用級晶片組的重視,使美國成為該行業的主要創新中心。此外,對安全標準的遵守以及人工智慧驅動的預測性維護和互聯車隊技術的日益普及,也進一步增強了市場的發展勢頭。
汽車人工智慧處理器市場的主要參與者包括特斯拉、英偉達、高通、博世、百度、華為、地平線機器人、大陸集團、安波福和Mobileye(英特爾旗下)。這些公司正採取多種策略來鞏固其競爭優勢。關鍵企業正大力投資人工智慧驅動的半導體研發,重點在於節能架構、先進的神經處理單元和邊緣人工智慧整合。與汽車製造商和一級供應商的合作有助於簡化人工智慧在車輛平台上的部署。此外,各公司也正在拓展產品組合,提供可擴展的解決方案,以滿足自動駕駛和互聯汽車的需求。與軟體開發人員和雲端服務供應商的策略合作,則實現了人工智慧工具鍊和資料分析的無縫整合。
The Global Automotive AI Processors Market was valued at USD 5.6 Billion in 2024 and is estimated to grow at a CAGR of 20.5% to reach USD 33.5 Billion by 2034.

The market is witnessing rapid growth due to the increasing integration of artificial intelligence across modern vehicles for advanced driver-assistance systems (ADAS), autonomous driving, in-vehicle infotainment, and predictive maintenance. These AI processors deliver exceptional computing performance while maintaining power efficiency and low latency, enabling vehicles to make real-time decisions critical to safety and automation. As automotive manufacturers increasingly embed AI and machine learning technologies, the demand for processors capable of large-scale data processing, model training, and inferencing continues to rise. Major chip developers are focusing on creating automotive-grade software development kits (SDKs), AI frameworks, and certification programs that support OEMs and Tier-1 suppliers in designing intelligent systems. The growing adoption of electric and connected vehicles has further accelerated the need for AI processors capable of handling vast amounts of real-time sensor and camera data. Hybrid on-vehicle and cloud-based AI architectures are becoming standard, especially in sectors like logistics and public transport, where system optimization and safety compliance are paramount.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $5.6 Billion |
| Forecast Value | $33.5 Billion |
| CAGR | 20.5% |
The graphics processing unit (GPU) segment held a 38% share in 2024, driven by its unmatched parallel computing capabilities essential for autonomous navigation, sensor fusion, and perception tasks. Automakers are increasingly relying on GPU-based AI processors to enhance deep learning and computer vision performance. The ability of GPUs to process multiple data streams simultaneously enables faster inference, improved model accuracy, and reduced time-to-market for next-generation vehicle systems.
The ADAS segment held a 42% share in 2024. Its growth stems from expanding integration of safety and automation features such as adaptive cruise control, lane-keeping assistance, and collision avoidance technologies in both passenger and commercial vehicles. Regulatory requirements for vehicle safety and the growing consumer interest in semi-autonomous driving are accelerating demand for ADAS systems. AI processors serve as the computational core for these systems, managing real-time data interpretation and decision-making to improve driver and passenger safety.
U.S. Automotive AI Processors Market reached USD 2 Billion in 2024. The country's strong technological base, coupled with rapid advancements in electric and autonomous vehicles, continues to drive significant demand. Focus on edge computing, AI development tools, and automotive-grade chipsets has positioned the U.S. as a major innovation hub in this industry. Compliance with safety standards and growing integration of AI-driven predictive maintenance and connected fleet technologies further strengthen the market's momentum.
Prominent companies operating in the Automotive AI Processors Market include Tesla, NVIDIA, Qualcomm, Robert Bosch, Baidu, Huawei Technologies, Horizon Robotics, Continental, Aptiv, and Mobileye (Intel). Companies in the Automotive AI Processors Market are employing multiple strategies to strengthen their competitive positioning. Key players are heavily investing in AI-driven semiconductor R&D, focusing on energy-efficient architectures, advanced neural processing units, and edge AI integration. Partnerships with automakers and Tier-1 suppliers help streamline AI deployment across vehicle platforms. Firms are also expanding their product portfolios with scalable solutions tailored for both autonomous and connected vehicles. Strategic collaborations with software developers and cloud providers enable seamless integration of AI toolchains and data analytics.