封面
市場調查報告書
商品編碼
1851995

汽車半導體:市場佔有率分析、產業趨勢、統計數據和成長預測(2025-2030 年)

Automotive Semiconductor - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計到 2025 年,汽車半導體市場規模將達到 1,004.8 億美元,到 2030 年將達到 1,428.7 億美元,年複合成長率為 7.29%。

汽車半導體市場-IMG1

電氣化強制令、高級駕駛輔助功能的快速普及以及向軟體定義汽車的轉型,正在推動所有車型對晶片的需求成長。汽車製造商競相確保長期晶圓代工產能,而分區架構的​​普及則促使投資集中於高效能處理器、記憶體和功率元件。供應鏈彈性計畫與多源採購策略相結合,正在重塑採購格局,而寬能能隙裝置和整合功率模組則帶來了新的設計機遇,即使成熟節點組件價格趨於穩定,也能保持定價權。

全球汽車半導體市場趨勢與洞察

電氣化將增加每輛車的半導體含量。

純電動平台增加了內燃機車型所沒有的電力電子元件、電池管理積體電路和溫度控管控制器。從400V到800V的電氣系統升級需要碳化矽(SiC)MOSFET來承受更高的電壓並降低開關損耗。英飛凌的溝槽式SiC超接面電阻降低了40%,電流容量提高了25%,從而可以製造更小的牽引逆變器並加快充電速度。恩智浦的超寬頻無線電池管理系統無需笨重的電纜,減輕了車輛重量,並為更高能量密度的電池組騰出了空間。高壓架構還需要增強隔離、閘極驅動器和高精度電流感測器。所有這些因素加在一起,使得電動車的半導體成本比傳統汽車高出許多倍。

對先進安全和舒適系統的需求不斷成長

二級及以上駕駛輔助系統整合了包括雷達、LiDAR和高解析度攝影機在內的多模態感測器套件,每小時產生Terabyte的資料。即時感測器融合工作負載需要專用處理器和嵌入式神經網路加速器。恩智浦半導體 (NXP) 的 28 奈米射頻CMOS 雷達單晶片系列提供 360 度全方位覆蓋和內建 AI 目標分類功能,從而降低物料成本並簡化系統結構。諸如歐司朗 (ams Osram) 的 8 通道脈衝雷射等互補的光學創新技術,可提供 1000 瓦的峰值光功率,從而擴展雷射雷達在高速公路自動駕駛功能中的探測範圍。 ISO 26262 法規要求推動了冗餘運算路徑和安全診斷技術的應用,進一步增加了晶片成本。

持續的供應鏈瓶頸和晶片短缺

汽車產業的前置作業時間仍然比消費性電子產業的標準更長,尤其是成熟節點的微控制器、感測器和類比元件。汽車級專用封裝能力集中在東亞,這造成了單一故障點。為了應對地域風險,GlobalFoundries 和 NXP 擴大了合作,將 22FDX 的生產分別在德勒斯登和紐約進行,為汽車製造商提供了符合一級認證的雙源供應路徑。

細分市場分析

預計到2024年,積體電路將佔汽車半導體市場866億美元的佔有率,並在2030年之前以8.5%的複合年成長率成長。隨著閘道器、車身和動力傳動系統總成等細分市場向更高時脈頻率和更大記憶體容量發展,微控制器正引領著這一趨勢。英飛凌將其AURIX系列擴展到RISC-V架構,使其在汽車半導體微控制器市場佔據了28.5%的佔有率,加速了該領域的技術創新。儘管晶片系統整合給舊款裝置帶來了價格壓力,但類比IC在電源管理、感測器介面和電壓調節方面仍然發揮著至關重要的作用。

分立元件、光電子元件和感測器/MEMS類別構成了剩餘部分。分離式IGBT和MOSFET為牽引逆變器和繼電器替代開關供電,而功率模組設計擴大將多個晶粒整合到單一基板上。光電子裝置受益於自我調整LED照明和新興的LiDAR單元,而MEMS加速計、陀螺儀和壓力感測器在ADAS和舒適性功能中也變得越來越普遍。將原本獨立的元件整合到更高價值的積體電路中的區域架構,解釋了為什麼積體電路持續優於更廣泛的汽車半導體市場。

區域分析

預計到2024年,亞太地區將佔全球汽車半導體出貨量的71.5%,到2030年將以7.8%的複合年成長率成長。中國新能源汽車滲透率在2024年超過39%,同年成立了300多家國內晶片設計公司,以實現北京提出的100%國產化目標。總部位於上海的地平線機器人公司獲得了一項重要的設計訂單,佔據了國內ADAS處理器33.97%的市場佔有率,而晶圓代工廠中芯國際則設定了2026年汽車市場10%的產能目標。印度正透過總額達7,600億盧比的「印度半導體計畫」拓展其半導體生態系。核准的提案總額達210億美元,其中包括塔塔電子、海麥克斯和台積電在顯示器和超低功耗人工智慧夥伴關係。

北美則位居第二,這主要得益於《晶片與科學法案》提供的390億美元激勵措施,以及台積電在亞利桑那州投資66億美元的擴建項目等重大計劃。特斯拉與三星簽署了一項價值165億美元、為期八年的晶圓供應協議,確保了在德克薩斯生產的用於自動駕駛晶片的先進節點產能。加拿大半導體理事會接納英飛凌為成員,旨在推動電動車價值鏈政策的協調一致。

歐洲正通過一項價值430億歐元(約486億美元)的歐盟晶片法案,追求戰略自主,目標是到2030年佔據全球晶片產量的20%。義法半導體(STMicroelectronics)已在義大利卡塔尼亞破土動工興建一座整合碳化矽(SiC)晶圓廠,而德勒斯登的一個財團也獲得了50億歐元(約57億美元)的國家援助,用於建造一座新的邏輯晶片工廠。像Stellantis這樣的汽車製造商正與英飛凌(Infineon)合作開發電源轉換系統,從而獲得優先供應碳化矽MOSFET的機會。儘管仍處於發展階段,但中東/非洲和南美洲的電動車滲透率已達到兩位數,一旦當地供應鏈成熟,這些地區將成為未來的成長節點。

其他福利:

  • Excel格式的市場預測(ME)表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場情勢

  • 市場概覽
  • 市場促進因素
    • 新興國家汽車產量增加
    • 對先進安全和舒適系統的需求不斷成長
    • 電氣化將增加每輛車上安裝的半導體數量。
    • 區域電子/電氣架構和軟體定義車輛推動高階處理器的發展
    • 政府對汽車級鑄造產能的補貼
    • 電動車動力傳動系統中採用碳化矽和氮化鎵功率裝置
  • 市場限制
    • 高性能車輛高成本
    • 持續的供應鏈瓶頸和晶片短缺
    • 寬能能隙基板(SiC/GaN)的稀缺性和高成本
    • 汽車品質評估週期過長,導致產品上市時間延長。
  • 產業價值鏈分析
  • 監管環境
  • 技術展望
  • 自動駕駛汽車對射頻設備的需求
  • 波特五力分析
    • 供應商的議價能力
    • 買方的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭
  • 投資分析
  • 宏觀經濟趨勢的影響

第5章 市場規模與成長預測

  • 依設備類型(設備類型出貨互為補充)
    • 離散半導體
      • 二極體
      • 電晶體
      • 功率電晶體
      • 整流器和閘流體
      • 其他分立元件
    • 光電子學
      • 發光二極體(LED)
      • 雷射二極體
      • 影像感測器
      • 光耦合器
      • 其他設備類型
    • 感測器和微機電系統
      • 壓力
      • 磁場
      • 致動器
      • 加速度和偏航率
      • 溫度和其他
    • 積體電路
      • 依積體電路類型
      • 模擬
      • 微處理器(MPU)
      • 微控制器(MCU)
      • 數位訊號處理器
      • 邏輯
      • 記憶
      • 按技術節點(出貨量不適用)
      • 小於3奈米
      • 3nm
      • 5nm
      • 7nm
      • 16nm
      • 28nm
      • 大於28奈米
  • 按經營模式
    • IDM
    • 設計/無晶圓廠供應商
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
      • 墨西哥
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲國家
    • 歐洲
      • 德國
      • 英國
      • 法國
      • 義大利
      • 西班牙
      • 其他歐洲地區
    • 亞太地區
      • 中國
      • 日本
      • 韓國
      • 印度
      • 亞太其他地區
    • 中東和非洲
      • 中東
      • 沙烏地阿拉伯
      • 阿拉伯聯合大公國
      • 土耳其
      • 其他中東地區
      • 非洲
      • 南非
      • 奈及利亞
      • 埃及
      • 其他非洲地區

第6章 競爭情勢

  • 市場集中度
  • 策略趨勢
  • 市佔率分析
  • 公司簡介
    • NXP Semiconductors NV
    • Infineon Technologies AG
    • Renesas Electronics Corporation
    • STMicroelectronics NV
    • Texas Instruments Inc.
    • Toshiba Electronic Devices & Storage Corp.
    • Micron Technology Inc.
    • onsemi
    • Analog Devices Inc.
    • Robert Bosch GmbH(Semiconductor Division)
    • ROHM Co., Ltd.
    • NVIDIA Corporation
    • Qualcomm Technologies Inc.
    • Intel Corporation(Mobileye)
    • Samsung Electronics Co., Ltd.(System LSI)
    • MediaTek Inc.
    • BYD Semiconductor Co. Ltd.
    • Semtech Corporation
    • Diodes Incorporated
    • Microchip Technology Inc.
    • Melexis NV
    • Elmos Semiconductor SE
    • Allegro Microsystems, Inc.
    • Skyworks Solutions, Inc.
    • Ambarella Inc.
    • Wolfspeed Inc.

第7章 市場機會與未來展望

簡介目錄
Product Code: 52537

The automotive semiconductor market size reached USD 100.48 billion in 2025 and is forecast to expand at a 7.29% CAGR, lifting the market value to USD 142.87 billion in 2030.

Automotive Semiconductor - Market - IMG1

Mounting electrification mandates, rapid adoption of advanced driver-assistance features, and the pivot toward software-defined vehicles are pushing silicon content higher across every vehicle class. Automakers are racing to secure long-term foundry capacity, and the spread of zonal architectures is concentrating spend on high-performance processors, memory, and power devices. Supply-chain resiliency programs combined with multi-sourcing strategies are reshaping procurement, while wide-bandgap devices and integrated power modules open fresh design-in opportunities that sustain pricing power even as mature-node components normalize.

Global Automotive Semiconductor Market Trends and Insights

Electrification Boosting Semiconductor Content Per Vehicle

Battery-electric platforms add power electronics, battery-management ICs, and thermal-management controllers absent in internal-combustion models. The transition from 400 V to 800 V electrical systems demands silicon-carbide (SiC) MOSFETs that sustain higher voltages with lower switching losses. Infineon's trench-based SiC super-junction devices deliver 40% lower resistance and 25% higher current capability, enabling smaller traction inverters and faster charging times. NXP's ultra-wideband wireless battery-management system removes heavy cabling, trims vehicle weight, and frees space for higher energy-density packs. Higher-voltage architectures also need reinforced isolation, gate drivers, and precision current sensors that command premium average selling prices. Collectively, these factors lift semiconductor dollar content per EV to multiples of conventional vehicles.

Rising Demand for Advanced Safety and Comfort Systems

Level 2+ driver-assistance packages integrate multi-modal sensor suites-radar, LiDAR, and high-resolution cameras-producing terabytes of data per hour. Real-time sensor-fusion workloads require application-specific processors and embedded neural-network accelerators. NXP's 28 nm RFCMOS radar one-chip family now offers 360-degree coverage and built-in AI object classification, cutting bill-of-materials and simplifying system architecture. Complementary optical innovations, such as ams OSRAM's eight-channel pulsed lasers, deliver 1,000 W peak optical power, extending LiDAR range for highway autopilot features. Regulatory demands under ISO 26262 reinforce the adoption of redundant compute paths and safety diagnostics, further elevating silicon spend.

Persistent Supply-Chain Constraints and Chip Shortages

Automotive lead times remain longer than consumer electronics norms, especially for mature-node microcontrollers, sensors, and analog components. Specialized automotive-grade packaging capacity is heavily concentrated in East Asia, creating single points of failure. To address geographic risk, GlobalFoundries and NXP broadened their collaboration on 22FDX production split between Dresden and New York, giving automakers a dual-sourced pathway that meets Grade 1 qualification.Automakers are now embedding foundry capacity clauses into long-term supply agreements to shield vehicle launches from component shortages.

Other drivers and restraints analyzed in the detailed report include:

  1. Zonal E/E Architectures and Software-Defined Vehicles Spur High-End Processors
  2. SiC and GaN Power Devices Adoption in EV Powertrains
  3. Scarcity and Cost of Wide-Bandgap Substrates (SiC/GaN)

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Integrated circuits represented USD 86.6 billion of the automotive semiconductor market size in 2024 and are forecast to post an 8.5% CAGR through 2030. Microcontrollers lead the pack as gateway, body, and powertrain domains migrate to higher clock speeds and expanded memory footprints. Infineon captured 28.5% share of the automotive semiconductor market within microcontrollers by expanding its AURIX family to a RISC-V architecture, reinforcing the segment's technological churn. Analog ICs retain a pivotal role in power management, sensor interfacing, and voltage regulation, although system-on-chip consolidation exerts price pressure on older node devices.

Discrete devices, optoelectronics, and sensor/MEMS categories account for the balance. Discrete IGBTs and MOSFETs underpin traction inverters and relay-replacement switches, but design-ins increasingly favor integrated power modules that collapse multiple dies into a single substrate. Optoelectronics benefit from adaptive LED lighting and emerging LiDAR units, while MEMS accelerometers, gyros, and pressure sensors proliferate across ADAS and comfort features. Zonal architectures bundle former standalone components into higher-value ICs, explaining why integrated circuits continue to outpace the wider automotive semiconductor market.

Automotive Semiconductor Market Report is Segmented by Device Type (Discrete Semiconductors [Diodes, and More], Optoelectronics [Laser Diodes, and More], Sensors and MEMS [Pressure, Actuators, and More], and Integrated Circuits), Business Model (IDM, and Design/ Fabless Vendor), and Geography (North America, South America, Europe, Asia-Pacific, and Middle East and Africa). The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia-Pacific commanded 71.5% of automotive semiconductor shipments in 2024 and is expected to grow at a 7.8% CAGR to 2030. China's new-energy vehicle penetration surpassed 39% in 2024, and more than 300 domestic chip design firms were established that year to chase Beijing's 100% sourcing target. Shanghai-based Horizon Robotics secured major design wins, claiming 33.97% share of local ADAS processor volume, while foundry SMIC set a 10% automotive revenue goal for 2026 production. India is scaling its semiconductor ecosystem under the USD 76,000 crore India Semiconductor Mission; approved proposals total USD 21 billion, including display and ultralow-power AI partnerships between Tata Electronics, Himax, and PSMC.

North America ranks second, buoyed by the USD 39 billion CHIPS and Science Act incentives and marquee projects such as TSMC's USD 6.6 billion Arizona expansion. Tesla inked a USD 16.5 billion, eight-year wafer-supply pact with Samsung, locking in advanced-node capacity for autonomous-driving silicon manufactured in Texas. Canada's Semiconductor Council added Infineon as a member to drive policy alignment on electric-mobility value chains.

Europe pursues strategic autonomy via the EUR 43 billion (USD 48.6 billion) EU Chips Act, aiming to capture 20% global output by 2030. STMicroelectronics broke ground on an integrated SiC fab in Catania, Italy, while a Dresden consortium secured EUR 5 billion (USD 5.7 billion) in state aid for a new logic facility. Automakers such as Stellantis co-develop power-conversion systems with Infineon, ensuring preferential access to SiC MOSFET supply. The Middle East, Africa, and South America remain nascent but exhibit double-digit EV adoption trajectories, positioning them as future growth nodes once local supply chains mature.

  1. NXP Semiconductors N.V.
  2. Infineon Technologies AG
  3. Renesas Electronics Corporation
  4. STMicroelectronics N.V.
  5. Texas Instruments Inc.
  6. Toshiba Electronic Devices & Storage Corp.
  7. Micron Technology Inc.
  8. onsemi
  9. Analog Devices Inc.
  10. Robert Bosch GmbH (Semiconductor Division)
  11. ROHM Co., Ltd.
  12. NVIDIA Corporation
  13. Qualcomm Technologies Inc.
  14. Intel Corporation (Mobileye)
  15. Samsung Electronics Co., Ltd. (System LSI)
  16. MediaTek Inc.
  17. BYD Semiconductor Co. Ltd.
  18. Semtech Corporation
  19. Diodes Incorporated
  20. Microchip Technology Inc.
  21. Melexis NV
  22. Elmos Semiconductor SE
  23. Allegro Microsystems, Inc.
  24. Skyworks Solutions, Inc.
  25. Ambarella Inc.
  26. Wolfspeed Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increasing vehicle production in emerging economies
    • 4.2.2 Rising demand for advanced safety and comfort systems
    • 4.2.3 Electrification boosting semiconductor content per vehicle
    • 4.2.4 Zonal E/E architectures and software-defined vehicles spur high-end processors
    • 4.2.5 Government subsidies for auto-grade foundry capacity
    • 4.2.6 SiC and GaN power devices adoption in EV powertrains
  • 4.3 Market Restraints
    • 4.3.1 High cost of advanced-feature vehicles
    • 4.3.2 Persistent supply-chain constraints and chip shortages
    • 4.3.3 Scarcity and cost of wide-bandgap substrates (SiC/GaN)
    • 4.3.4 Lengthy automotive qualification cycles slow time-to-market
  • 4.4 Industry Value Chain Analysis
  • 4.5 Regulatory Landscape
  • 4.6 Technological Outlook
  • 4.7 RF Device Demand in Autonomous Vehicles
  • 4.8 Porter's Five Forces Analysis
    • 4.8.1 Bargaining Power of Suppliers
    • 4.8.2 Bargaining Power of Buyers
    • 4.8.3 Threat of New Entrants
    • 4.8.4 Threat of Substitute Products
    • 4.8.5 Intensity of Competitive Rivalry
  • 4.9 Investment Analysis
  • 4.10 Impact of Macroeconomic Trends

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Device Type (Shipment Volume for Device Type is Complementary)
    • 5.1.1 Discrete Semiconductors
      • 5.1.1.1 Diodes
      • 5.1.1.2 Transistors
      • 5.1.1.3 Power Transistors
      • 5.1.1.4 Rectifier and Thyristor
      • 5.1.1.5 Other Discrete Devices
    • 5.1.2 Optoelectronics
      • 5.1.2.1 Light-Emitting Diodes (LEDs)
      • 5.1.2.2 Laser Diodes
      • 5.1.2.3 Image Sensors
      • 5.1.2.4 Optocouplers
      • 5.1.2.5 Other Device Types
    • 5.1.3 Sensors and MEMS
      • 5.1.3.1 Pressure
      • 5.1.3.2 Magnetic Field
      • 5.1.3.3 Actuators
      • 5.1.3.4 Acceleration and Yaw Rate
      • 5.1.3.5 Temperature and Others
    • 5.1.4 Integrated Circuits
      • 5.1.4.1 By Integrated Circuit Type
      • 5.1.4.1.1 Analog
      • 5.1.4.1.2 Micro
      • 5.1.4.1.2.1 Microprocessors (MPU)
      • 5.1.4.1.2.2 Microcontrollers (MCU)
      • 5.1.4.1.2.3 Digital Signal Processors
      • 5.1.4.1.3 Logic
      • 5.1.4.1.4 Memory
      • 5.1.4.2 By Technology Node (Shipment Volume Not Applicable)
      • 5.1.4.2.1 < 3nm
      • 5.1.4.2.2 3nm
      • 5.1.4.2.3 5nm
      • 5.1.4.2.4 7nm
      • 5.1.4.2.5 16nm
      • 5.1.4.2.6 28nm
      • 5.1.4.2.7 > 28nm
  • 5.2 By Business Model
    • 5.2.1 IDM
    • 5.2.2 Design/ Fabless Vendor
  • 5.3 By Geography
    • 5.3.1 North America
      • 5.3.1.1 United States
      • 5.3.1.2 Canada
      • 5.3.1.3 Mexico
    • 5.3.2 South America
      • 5.3.2.1 Brazil
      • 5.3.2.2 Argentina
      • 5.3.2.3 Rest of South America
    • 5.3.3 Europe
      • 5.3.3.1 Germany
      • 5.3.3.2 United Kingdom
      • 5.3.3.3 France
      • 5.3.3.4 Italy
      • 5.3.3.5 Spain
      • 5.3.3.6 Rest of Europe
    • 5.3.4 Asia-Pacific
      • 5.3.4.1 China
      • 5.3.4.2 Japan
      • 5.3.4.3 South Korea
      • 5.3.4.4 India
      • 5.3.4.5 Rest of Asia-Pacific
    • 5.3.5 Middle East and Africa
      • 5.3.5.1 Middle East
      • 5.3.5.1.1 Saudi Arabia
      • 5.3.5.1.2 United Arab Emirates
      • 5.3.5.1.3 Turkey
      • 5.3.5.1.4 Rest of Middle East
      • 5.3.5.2 Africa
      • 5.3.5.2.1 South Africa
      • 5.3.5.2.2 Nigeria
      • 5.3.5.2.3 Egypt
      • 5.3.5.2.4 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles {(includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)}
    • 6.4.1 NXP Semiconductors N.V.
    • 6.4.2 Infineon Technologies AG
    • 6.4.3 Renesas Electronics Corporation
    • 6.4.4 STMicroelectronics N.V.
    • 6.4.5 Texas Instruments Inc.
    • 6.4.6 Toshiba Electronic Devices & Storage Corp.
    • 6.4.7 Micron Technology Inc.
    • 6.4.8 onsemi
    • 6.4.9 Analog Devices Inc.
    • 6.4.10 Robert Bosch GmbH (Semiconductor Division)
    • 6.4.11 ROHM Co., Ltd.
    • 6.4.12 NVIDIA Corporation
    • 6.4.13 Qualcomm Technologies Inc.
    • 6.4.14 Intel Corporation (Mobileye)
    • 6.4.15 Samsung Electronics Co., Ltd. (System LSI)
    • 6.4.16 MediaTek Inc.
    • 6.4.17 BYD Semiconductor Co. Ltd.
    • 6.4.18 Semtech Corporation
    • 6.4.19 Diodes Incorporated
    • 6.4.20 Microchip Technology Inc.
    • 6.4.21 Melexis NV
    • 6.4.22 Elmos Semiconductor SE
    • 6.4.23 Allegro Microsystems, Inc.
    • 6.4.24 Skyworks Solutions, Inc.
    • 6.4.25 Ambarella Inc.
    • 6.4.26 Wolfspeed Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-Need Assessment