封面
市場調查報告書
商品編碼
1922751

日本醫療3D列印市場規模、佔有率、趨勢及預測(依材料、技術、應用、最終用戶及地區分類),2026-2034年

Japan 3D Printing in Healthcare Market Size, Share, Trends and Forecast by Material, Technology, Application, End User, and Region, 2026-2034

出版日期: | 出版商: IMARC | 英文 120 Pages | 商品交期: 5-7個工作天內

價格
簡介目錄

2025年,日本醫療保健產業的3D列印市場規模達到2.316億美元。展望未來,IMARC Group預測,到2034年,該市場規模將達到7.799億美元,2026年至2034年的複合年成長率(CAGR)為14.44%。推動日本醫療保健產業3D列印市場佔有率成長的因素包括:對客製化植入和義肢的需求不斷成長、生物列印技術在組織工程領域的應用日益廣泛、醫療保健行業研發投入的增加、政府的支持措施,以及對能夠改善治療效果的、經濟高效且以患者為中心的醫療解決方案的重視。

日本醫療領域3D列印市場的發展趨勢:

將3D列印技術應用於個人化醫療

日本醫療保健產業正迅速向個人化治療轉型,而3D列印已成為推動這項變革的關鍵技術之一。醫院和研究機構擴大利用積層製造技術來製作病患特異性的植入、義肢和解剖模型。人口老化是推動此需求的主要因素,因為客製化植入更適合具有特定解剖結構的年長患者。外科醫生擴大使用3D列印模型進行術前規劃,從而縮短手術時間並提高手術精度。牙科領域率先採用了這項技術,許多牙科診所現在提供3D列印的牙冠和矯正器。此外,法規環境也日趨友好,日本藥品和醫療設備管理局(PMDA)已意識到需要簡化病患客製化產品的核准流程。在大學、醫院和醫療設備製造商之間合作日益密切的推動下,日本在精準醫療領域應用3D列印技術方面發揮著主導作用。這些因素正在加速日本醫療保健產業3D列印市場的成長。

生物列印技術在再生醫學的應用日益廣泛

在日本,生物列印技術在再生醫學領域的興起是另一個大發展趨勢。研究人員和生物技術公司正在探索利用活細胞進行3D列印的潛力,以製造組織、類器官和先進結構,最終取代捐贈器官。日本政府透過其「再生醫學促進計畫」積極支持再生醫學研究,提供資金和政策支持。東京大學和理化學研究所等機構在開發生物列印技術方面處於領先地位,這些技術有望徹底改變器官移植領域。製藥公司也正在利用生物列印組織進行藥物測試,從而減少動物試驗並加快藥物研發進程。日本在精密工程和機器人技術方面的領先優勢使其在拓展醫療生物列印技術方面擁有獨特的優勢。這一趨勢表明,日本有望在未來十年內成為基於生物列印技術的再生醫學領域的全球領導者之一。

本報告解答的關鍵問題

  • 日本醫療領域的 3D 列印市場目前發展如何?您認為未來幾年它將如何發展?
  • 日本醫療產業的3D列印市場按材料分類的情況如何?
  • 日本醫療3D列印市場按技術分類的情況如何?
  • 日本醫療3D列印市場按應用領域分類的市場區隔如何?
  • 日本醫療領域3D列印市場依最終用戶分類的市場區隔如何?
  • 日本醫療3D列印市場按地區分類的情況如何?
  • 請介紹日本醫療領域3D列印市場價值鏈的各個環節。
  • 日本醫療領域3D列印市場的主要促進因素與挑戰是什麼?
  • 日本醫療領域3D列印市場的結構是怎麼樣的?主要參與者有哪些?
  • 日本醫療產業的3D列印市場競爭有多激烈?

目錄

第1章:序言

第2章:調查範圍與調查方法

  • 調查目標
  • 相關利益者
  • 數據來源
  • 市場估值
  • 調查方法

第3章執行摘要

第4章:日本醫療3D列印市場概覽

  • 概述
  • 市場動態
  • 產業趨勢
  • 競爭資訊

第5章:日本醫療領域的3D列印市場:現狀

  • 過去和當前的市場趨勢(2020-2025)
  • 市場預測(2026-2034)

第6章:日本醫療領域3D列印市場:依資料細分

  • 聚合物
  • 金屬
  • 陶瓷製品
  • 有機材料

第7章:日本醫療領域的3D列印市場-依技術細分

  • 液滴式積層製造
  • 光聚合
  • 雷射束熔煉
  • 電子束熔化(EBM)
  • 積層製造
  • 其他

第8章:日本醫療領域3D列印市場:依應用領域細分

  • 外部穿戴裝置
  • 臨床研究設備
  • 植入
  • 組織工程

第9章:日本醫療領域的3D列印市場-依最終用戶細分

  • 醫療和外科中心
  • 製藥和生物技術公司
  • 學術機構

第10章:日本醫療領域3D列印市場:依地區分類

  • 關東地區
  • 關西、近畿地區
  • 中部地區
  • 九州和沖繩地區
  • 東北部地區
  • 中國地區
  • 北海道地區
  • 四國地區

第11章:日本醫療領域3D列印市場:競爭格局

  • 概述
  • 市場結構
  • 市場公司定位
  • 關鍵成功策略
  • 競爭對手儀錶板
  • 企業估值象限

第12章主要企業概況

第13章:日本醫療領域3D列印市場:產業分析

  • 促進因素、限制因素和機遇
  • 波特五力分析
  • 價值鏈分析

第14章附錄

簡介目錄
Product Code: SR112026A41933

The Japan 3D printing in healthcare market size reached USD 231.6 Million in 2025 . Looking forward, IMARC Group expects the market to reach USD 779.9 Million by 2034 , exhibiting a growth rate (CAGR) of 14.44% during 2026-2034 . Growing demand for customized implants and prosthetics, increasing adoption of bioprinting for tissue engineering, rising healthcare R&D investment, supportive government initiatives, and a focus on cost-effective, patient-specific medical solutions improving treatment outcomes are some of the factors contributing to Japan 3D printing in healthcare market share.

JAPAN 3D PRINTING IN HEALTHCARE MARKET TRENDS:

Integration of 3D Printing in Personalized Medicine

Japan's healthcare sector is moving fast toward individualized treatment, and 3D printing has come forward as one of the leading forces behind the shift. Hospitals and research institutions are increasingly using additive manufacturing to create patient-specific implants, prosthetics, and anatomical models. Japan's aging population is one of the key drivers behind this demand, as customized implants are more suitable for elderly patients with specific anatomical requirements. Surgeons are increasingly relying on 3D-printed models for pre-operative planning, reducing the time for surgery and improving accuracy. Dental treatment has been one of the early adopters, with a number of clinics embracing 3D-printed crowns and aligners. In addition, the regulatory environment is increasingly friendly, with Japan's Pharmaceuticals and Medical Devices Agency (PMDA) recognizing the necessity of streamlining approval procedures for patient-specific products. Japan is setting the pace in the application of 3D printing in precision medicine, driven by increased collaboration between universities, hospitals, and medical device manufacturers. These factors are intensifying the Japan 3D printing in healthcare market growth.

To get more information on this market Request Sample

Growing Use of Bioprinting for Regenerative Medicine

Another trend that is picking up pace in Japan is the emergence of bioprinting for regenerative medicine. Researchers and biotech firms are investigating the scope of 3D printing with living cells to create tissues, organoids, and even sophisticated structures that can eventually serve as substitutes for donor organs. The government in Japan has been actively supporting research in regenerative medicine, providing funding and policy support through its initiatives in regenerative medicine promotion. Institutions such as the University of Tokyo and RIKEN lead the charge, developing bioprinting technology that has the potential to revolutionize organ transplantation. Drug companies also test drugs using bioprinted tissues, cutting down on animal trials and accelerating the drug development process. With Japan's cutting-edge experience in precision engineering and robotics, the nation has a special edge when it comes to upscaling bioprinting technologies for medicine. This trend indicates that Japan may become one of the world leaders in bioprinting-driven regenerative therapies within the next decade.

JAPAN 3D PRINTING IN HEALTHCARE MARKET SEGMENTATION:

Material Insights:

  • Polymer
  • Metals
  • Ceramic
  • Organic
  • Polymer
  • Metals
  • Ceramic
  • Organic

Technology Insights:

  • Droplet Deposition Fused Filament Fabrication (FFF) Technology Low-temperature Deposition Manufacturing (LDM) Multiphase Jet Solidification (MJS)
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Photopolymerization Stereolithography (SLA) Continuous Liquid Interface Production (CLIP) Two-photon Polymerization (2PP)
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Laser Beam Melting Selective Laser Sintering (SLS) Selective Laser Melting (SLM) Direct Metal Laser Sintering (DMLS)
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Electronic Beam Melting (EBM)
  • Laminated Object Manufacturing
  • Others
  • Droplet Deposition Fused Filament Fabrication (FFF) Technology Low-temperature Deposition Manufacturing (LDM) Multiphase Jet Solidification (MJS)
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Photopolymerization Stereolithography (SLA) Continuous Liquid Interface Production (CLIP) Two-photon Polymerization (2PP)
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Laser Beam Melting Selective Laser Sintering (SLS) Selective Laser Melting (SLM) Direct Metal Laser Sintering (DMLS)
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Electronic Beam Melting (EBM)
  • Laminated Object Manufacturing
  • Others

Application Insights:

  • Access the comprehensive market breakdown Request Sample
  • External Wearable Devices Hearing Aids Prosthesis and Orthotics Dental Products
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Clinical Study Devices Drug Testing Anatomical Models
  • Drug Testing
  • Anatomical Models
  • Implants Surgical Guides Cranio-maxillofacial Implants Orthopedic Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Tissue Engineering
  • External Wearable Devices Hearing Aids Prosthesis and Orthotics Dental Products
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Clinical Study Devices Drug Testing Anatomical Models
  • Drug Testing
  • Anatomical Models
  • Drug Testing
  • Anatomical Models
  • Drug Testing
  • Anatomical Models
  • Implants Surgical Guides Cranio-maxillofacial Implants Orthopedic Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Tissue Engineering

End User Insights:

  • Medical and Surgical Centers
  • Pharmaceutical and Biotechnology Companies
  • Academic Institutions
  • Medical and Surgical Centers
  • Pharmaceutical and Biotechnology Companies
  • Academic Institutions

Regional Insights:

  • Kanto Region
  • Kansai/Kinki Region
  • Central/Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region
  • Kanto Region
  • Kansai/Kinki Region
  • Central/Chubu Region
  • Kyushu-Okinawa Region
  • Tohoku Region
  • Chugoku Region
  • Hokkaido Region
  • Shikoku Region
  • The report has also provided a comprehensive analysis of all the major regional markets, which include Kanto Region, Kansai/Kinki Region, Central/Chubu Region, Kyushu-Okinawa Region, Tohoku Region, Chugoku Region, Hokkaido Region, and Shikoku Region.

COMPETITIVE LANDSCAPE:

The market research report has also provided a comprehensive analysis of the competitive landscape. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

  • KEY QUESTIONS ANSWERED IN THIS REPORT
  • How has the Japan 3D printing in healthcare market performed so far and how will it perform in the coming years?
  • What is the breakup of the Japan 3D printing in healthcare market on the basis of material?
  • What is the breakup of the Japan 3D printing in healthcare market on the basis of technology?
  • What is the breakup of the Japan 3D printing in healthcare market on the basis of application?
  • What is the breakup of the Japan 3D printing in healthcare market on the basis of end user?
  • What is the breakup of the Japan 3D printing in healthcare market on the basis of region?
  • What are the various stages in the value chain of the Japan 3D printing in healthcare market?
  • What are the key driving factors and challenges in the Japan 3D printing in healthcare market?
  • What is the structure of the Japan 3D printing in healthcare market and who are the key players?
  • What is the degree of competition in the Japan 3D printing in healthcare market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan 3D Printing in Healthcare Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan 3D Printing in Healthcare Market Landscape

  • 5.1 Historical and Current Market Trends (2020-2025)
  • 5.2 Market Forecast (2026-2034)

6 Japan 3D Printing in Healthcare Market - Breakup by Material

  • 6.1 Polymer
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2020-2025)
    • 6.1.3 Market Forecast (2026-2034)
  • 6.2 Metals
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2020-2025)
    • 6.2.3 Market Forecast (2026-2034)
  • 6.3 Ceramic
    • 6.3.1 Overview
    • 6.3.2 Historical and Current Market Trends (2020-2025)
    • 6.3.3 Market Forecast (2026-2034)
  • 6.4 Organic
    • 6.4.1 Overview
    • 6.4.2 Historical and Current Market Trends (2020-2025)
    • 6.4.3 Market Forecast (2026-2034)

7 Japan 3D Printing in Healthcare Market - Breakup by Technology

  • 7.1 Droplet Deposition
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2020-2025)
    • 7.1.3 Market Segmentation
      • 7.1.3.1 Fused Filament Fabrication (FFF) Technology
      • 7.1.3.2 Low-temperature Deposition Manufacturing (LDM)
      • 7.1.3.3 Multiphase Jet Solidification (MJS)
    • 7.1.4 Market Forecast (2026-2034)
  • 7.2 Photopolymerization
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2020-2025)
    • 7.2.3 Market Segmentation
      • 7.2.3.1 Stereolithography (SLA)
      • 7.2.3.2 Continuous Liquid Interface Production (CLIP)
      • 7.2.3.3 Two-photon Polymerization (2PP)
    • 7.2.4 Market Forecast (2026-2034)
  • 7.3 Laser Beam Melting
    • 7.3.1 Overview
    • 7.3.2 Historical and Current Market Trends (2020-2025)
    • 7.3.3 Market Segmentation
      • 7.3.3.1 Selective Laser Sintering (SLS)
      • 7.3.3.2 Selective Laser Melting (SLM)
      • 7.3.3.3 Direct Metal Laser Sintering (DMLS)
    • 7.3.4 Market Forecast (2026-2034)
  • 7.4 Electronic Beam Melting (EBM)
    • 7.4.1 Overview
    • 7.4.2 Historical and Current Market Trends (2020-2025)
    • 7.4.3 Market Forecast (2026-2034)
  • 7.5 Laminated Object Manufacturing
    • 7.5.1 Overview
    • 7.5.2 Historical and Current Market Trends (2020-2025)
    • 7.5.3 Market Forecast (2026-2034)
  • 7.6 Others
    • 7.6.1 Historical and Current Market Trends (2020-2025)
    • 7.6.2 Market Forecast (2026-2034)

8 Japan 3D Printing in Healthcare Market - Breakup by Application

  • 8.1 External Wearable Devices
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2020-2025)
    • 8.1.3 Market Segmentation
      • 8.1.3.1 Hearing Aids
      • 8.1.3.2 Prosthesis and Orthotics
      • 8.1.3.3 Dental Products
    • 8.1.4 Market Forecast (2026-2034)
  • 8.2 Clinical Study Devices
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2020-2025)
    • 8.2.3 Market Segmentation
      • 8.2.3.1 Drug Testing
      • 8.2.3.2 Anatomical Models
    • 8.2.4 Market Forecast (2026-2034)
  • 8.3 Implants
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2020-2025)
    • 8.3.3 Market Segmentation
      • 8.3.3.1 Surgical Guides
      • 8.3.3.2 Cranio-maxillofacial Implants
      • 8.3.3.3 Orthopedic Implants
    • 8.3.4 Market Forecast (2026-2034)
  • 8.4 Tissue Engineering
    • 8.4.1 Overview
    • 8.4.2 Historical and Current Market Trends (2020-2025)
    • 8.4.3 Market Forecast (2026-2034)

9 Japan 3D Printing in Healthcare Market - Breakup by End User

  • 9.1 Medical and Surgical Centers
    • 9.1.1 Overview
    • 9.1.2 Historical and Current Market Trends (2020-2025)
    • 9.1.3 Market Forecast (2026-2034)
  • 9.2 Pharmaceutical and Biotechnology Companies
    • 9.2.1 Overview
    • 9.2.2 Historical and Current Market Trends (2020-2025)
    • 9.2.3 Market Forecast (2026-2034)
  • 9.3 Academic Institutions
    • 9.3.1 Overview
    • 9.3.2 Historical and Current Market Trends (2020-2025)
    • 9.3.3 Market Forecast (2026-2034)

10 Japan 3D Printing in Healthcare Market - Breakup by Region

  • 10.1 Kanto Region
    • 10.1.1 Overview
    • 10.1.2 Historical and Current Market Trends (2020-2025)
    • 10.1.3 Market Breakup by Material
    • 10.1.4 Market Breakup by Technology
    • 10.1.5 Market Breakup by Application
    • 10.1.6 Market Breakup by End User
    • 10.1.7 Key Players
    • 10.1.8 Market Forecast (2026-2034)
  • 10.2 Kansai/Kinki Region
    • 10.2.1 Overview
    • 10.2.2 Historical and Current Market Trends (2020-2025)
    • 10.2.3 Market Breakup by Material
    • 10.2.4 Market Breakup by Technology
    • 10.2.5 Market Breakup by Application
    • 10.2.6 Market Breakup by End User
    • 10.2.7 Key Players
    • 10.2.8 Market Forecast (2026-2034)
  • 10.3 Central/Chubu Region
    • 10.3.1 Overview
    • 10.3.2 Historical and Current Market Trends (2020-2025)
    • 10.3.3 Market Breakup by Material
    • 10.3.4 Market Breakup by Technology
    • 10.3.5 Market Breakup by Application
    • 10.3.6 Market Breakup by End User
    • 10.3.7 Key Players
    • 10.3.8 Market Forecast (2026-2034)
  • 10.4 Kyushu-Okinawa Region
    • 10.4.1 Overview
    • 10.4.2 Historical and Current Market Trends (2020-2025)
    • 10.4.3 Market Breakup by Material
    • 10.4.4 Market Breakup by Technology
    • 10.4.5 Market Breakup by Application
    • 10.4.6 Market Breakup by End User
    • 10.4.7 Key Players
    • 10.4.8 Market Forecast (2026-2034)
  • 10.5 Tohoku Region
    • 10.5.1 Overview
    • 10.5.2 Historical and Current Market Trends (2020-2025)
    • 10.5.3 Market Breakup by Material
    • 10.5.4 Market Breakup by Technology
    • 10.5.5 Market Breakup by Application
    • 10.5.6 Market Breakup by End User
    • 10.5.7 Key Players
    • 10.5.8 Market Forecast (2026-2034)
  • 10.6 Chugoku Region
    • 10.6.1 Overview
    • 10.6.2 Historical and Current Market Trends (2020-2025)
    • 10.6.3 Market Breakup by Material
    • 10.6.4 Market Breakup by Technology
    • 10.6.5 Market Breakup by Application
    • 10.6.6 Market Breakup by End User
    • 10.6.7 Key Players
    • 10.6.8 Market Forecast (2026-2034)
  • 10.7 Hokkaido Region
    • 10.7.1 Overview
    • 10.7.2 Historical and Current Market Trends (2020-2025)
    • 10.7.3 Market Breakup by Material
    • 10.7.4 Market Breakup by Technology
    • 10.7.5 Market Breakup by Application
    • 10.7.6 Market Breakup by End User
    • 10.7.7 Key Players
    • 10.7.8 Market Forecast (2026-2034)
  • 10.8 Shikoku Region
    • 10.8.1 Overview
    • 10.8.2 Historical and Current Market Trends (2020-2025)
    • 10.8.3 Market Breakup by Material
    • 10.8.4 Market Breakup by Technology
    • 10.8.5 Market Breakup by Application
    • 10.8.6 Market Breakup by End User
    • 10.8.7 Key Players
    • 10.8.8 Market Forecast (2026-2034)

11 Japan 3D Printing in Healthcare Market - Competitive Landscape

  • 11.1 Overview
  • 11.2 Market Structure
  • 11.3 Market Player Positioning
  • 11.4 Top Winning Strategies
  • 11.5 Competitive Dashboard
  • 11.6 Company Evaluation Quadrant

12 Profiles of Key Players

  • 12.1 Company A
    • 12.1.1 Business Overview
    • 12.1.2 Services Offered
    • 12.1.3 Business Strategies
    • 12.1.4 SWOT Analysis
    • 12.1.5 Major News and Events
  • 12.2 Company B
    • 12.2.1 Business Overview
    • 12.2.2 Services Offered
    • 12.2.3 Business Strategies
    • 12.2.4 SWOT Analysis
    • 12.2.5 Major News and Events
  • 12.3 Company C
    • 12.3.1 Business Overview
    • 12.3.2 Services Offered
    • 12.3.3 Business Strategies
    • 12.3.4 SWOT Analysis
    • 12.3.5 Major News and Events
  • 12.4 Company D
    • 12.4.1 Business Overview
    • 12.4.2 Services Offered
    • 12.4.3 Business Strategies
    • 12.4.4 SWOT Analysis
    • 12.4.5 Major News and Events
  • 12.5 Company E
    • 12.5.1 Business Overview
    • 12.5.2 Services Offered
    • 12.5.3 Business Strategies
    • 12.5.4 SWOT Analysis
    • 12.5.5 Major News and Events

13 Japan 3D Printing in Healthcare Market - Industry Analysis

  • 13.1 Drivers, Restraints, and Opportunities
    • 13.1.1 Overview
    • 13.1.2 Drivers
    • 13.1.3 Restraints
    • 13.1.4 Opportunities
  • 13.2 Porters Five Forces Analysis
    • 13.2.1 Overview
    • 13.2.2 Bargaining Power of Buyers
    • 13.2.3 Bargaining Power of Suppliers
    • 13.2.4 Degree of Competition
    • 13.2.5 Threat of New Entrants
    • 13.2.6 Threat of Substitutes
  • 13.3 Value Chain Analysis

14 Appendix