封面
市場調查報告書
商品編碼
1844260

汽車超音波焊接設備市場機會、成長動力、產業趨勢分析及2025-2034年預測

Automotive Sonic Welding Equipment Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球汽車超音波焊接設備市場價值為 2.398 億美元,預計將以 5.8% 的複合年成長率成長,到 2034 年達到 4.159 億美元。

汽車超音波焊接設備市場 - IMG1

隨著汽車製造商越來越重視更輕、更堅固、更有效率的組裝方法,尤其是在電動車製造和下一代汽車內裝領域,市場發展也日益強勁。超音波焊接已被證明對於連接薄金屬、熱塑性塑膠、母線、能源模組和敏感感測器零件等組件至關重要。隨著電動車產量的擴大,這項技術變得更加重要,尤其是在電芯極耳、線束和電池模組連接等應用中。該工藝因其精確度高、低熱、非侵入式焊接能力強而備受青睞,能夠維持精密材料的完整性。原始設備製造商 (OEM) 正在採用超音波系統來降低生產成本、省去額外的精加工步驟並縮短週期。自動化和數位化整合正在重塑設備格局,機械手臂和超音波頭每個週期可執行多次焊接,並由 PLC 系統、IIoT 介面和 SPC 儀表板監控。即時回饋可實現製程一致性和預測性維護。該行業也在探索混合連接方法,將超音波焊接與黏合劑或機械緊固件結合,以處理具有複雜幾何形狀和強度要求的多材料組件。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 2.398億美元
預測值 4.159億美元
複合年成長率 5.8%

2024年,自動化設備領域佔據了64%的市場。這些系統廣泛應用於大型製造工廠,這些工廠的連續運作、速度和可重複性至關重要。與傳送系統和機器人自動化的整合可實現不間斷生產和均勻的焊接質量,使其成為亞太地區、北美和歐洲領先原始設備製造商的必備設備。自動化設定對於保持精度、提高產量和支援線上品質控制至關重要。

到2034年,熱塑性塑膠市場的複合年成長率將達到5.1%。熱塑性塑膠重量輕且易於焊接,廣泛應用於保險桿、面板和內裝零件。隨著混合動力車和電動車的興起,對能夠以最短週期進行超音波連接的熱塑性零件的需求日益成長。原始設備製造商 (OEM) 青睞超音波焊接,因為它的精度和效率更高,甚至一些較小的車間也開始轉向緊湊型系統,以便在預算有限的項目中實現精簡生產。

2024年,美國汽車超音波焊接設備市場規模達7,430萬美元。該國受益於先進的生產設施和對高科技製造方法的快速應用。汽車製造商和一級供應商正在大力投資手持式和自動化超音波焊接系統,以支援電動車和內燃機汽車生產線。這些系統對於電池極耳、線路系統和塑膠零件安裝等應用至關重要,可提供快速的加工和可靠的接頭完整性。隨著品質和安全要求的不斷提高,人工智慧監控系統、機器人流程整合和可追溯的焊接追蹤進一步推動了需求成長,所有這些都有助於提高生產可靠性和合規性。

全球汽車超音波焊接設備市場的主要參與者包括杜肯 (Dukane)、艾默生 (Emerson)、RINCO Ultrasonics、SONOTRONIC、Sonics & Materials、Telsonic、上海晨風、Herrmann Ultrasonics、Ultrasonic Engineering 和 Schunk。汽車超音波焊接設備領域的製造商正在透過擴展其自動化能力並提供符合工業 4.0 標準的系統來增強其市場影響力。 Herrmann Ultrasonics、艾默生和 Telsonic 等公司正在將人工智慧 (AI) 和機器學習 (ML) 融入焊接品質監控,以實現即時回饋和預測性維護。與原始設備製造商 (OEM) 和一級供應商的策略合作夥伴關係正幫助他們根據不斷變化的電動車製造需求調整產品開發。研發投資重點是混合連接技術和模組化系統,以實現靈活的工廠佈局。

目錄

第1章:方法論

  • 市場範圍和定義
  • 研究設計
    • 研究方法
    • 資料收集方法
  • 資料探勘來源
    • 全球的
    • 地區/國家
  • 基礎估算與計算
    • 基準年計算
    • 市場評估的主要趨勢
  • 初步研究和驗證
    • 主要來源
  • 預報
  • 研究假設和局限性

第 2 章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 供應商格局
    • 利潤率分析
    • 成本結構
    • 每個階段的增值
    • 影響價值鏈的因素
    • 中斷
  • 產業衝擊力
    • 成長動力
      • 電動車普及率和輕量化材料使用率的提高
      • 自動化製造和工業 4.0 應用的成長
      • 熱塑性部件需求不斷成長
      • 專注於降低生產成本和提高產量
    • 產業陷阱與挑戰
      • 自動化系統的前期資本成本高
      • 需要熟練的操作員和維護
    • 市場機會
      • 電動車電池組裝和模組化內裝的擴展
      • 改裝和售後備件和服務
  • 成長潛力分析
  • 監管格局
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特的分析
  • Pestel分析
  • 技術和創新格局
    • 當前的技術趨勢
    • 新興技術
  • 專利分析
  • 永續性和環境方面
    • 永續實踐
    • 減少廢棄物的策略
    • 生產中的能源效率
    • 環保舉措
    • 碳足跡考慮
  • 用例和應用
  • 最佳情況
  • 成本結構與定價分析
    • 設備成本明細
    • 定價策略分析
    • 總擁有成本分析
    • 價格趨勢分析
  • 產業差距及解決方案分析
    • 當前市場效率低下
    • 技術差距與創新機遇
    • 公司彌補差距的策略
    • 降低成本的策略
  • 市場成熟度與生命週期分析
    • 技術採用曲線
    • 各地區市場飽和度
    • 產品生命週期階段
    • 創新週期和研發投資趨勢
  • 區域製造和採購策略
    • 製造足跡最佳化
    • 近岸外包/回岸外包趨勢
    • 區域成本競爭力
    • 本地內容要求的影響

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 多邊環境協定
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 戰略展望矩陣
  • 關鍵進展
    • 併購
    • 夥伴關係與合作
    • 新產品發布
    • 擴張計劃和資金

第5章:市場估計與預測:按設備,2021 - 2034 年

  • 主要趨勢
  • 手持式
  • 自動化
  • 桌上型

第6章:市場估計與預測:依資料,2021 - 2034 年

  • 主要趨勢
  • 熱塑性塑膠
  • 金屬
  • 複合材料
  • 橡皮
  • 其他

第7章:市場估計與預測:依技術分類,2021 - 2034 年

  • 主要趨勢
  • 連續超音波焊接
  • 脈衝超音波焊接
  • 超音波點焊
  • 超音波封口

第 8 章:市場估計與預測:按最終用途,2021 - 2034 年

  • 主要趨勢
  • 原始設備製造商
  • 售後市場和服務提供商

第9章:市場估計與預測:按地區,2021 - 2034

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 北歐人
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 東南亞
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 多邊環境協定
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第10章:公司簡介

  • 全球參與者
    • Dukane
    • Emerson
    • Herrmann Ultrasonics
    • Schunk
    • Sonics & Materials
    • SONOTRONIC
    • Telsonic
    • Xfurth
  • 區域參與者
    • KLN Ultraschall
    • Kormax System
    • Nippon Avionics
    • Rinco Ultrasonics
    • SEDECO
    • Ultrasonic Engineering
  • 新興玩家
    • Dizo Global
    • Ever Ultrasonic
    • Hornwell Technology
    • Maxwide Ultrasonic
    • Shanghai Chenfeng
    • Ultra Autosonic
簡介目錄
Product Code: 14822

The Global Automotive Sonic Welding Equipment Market was valued at USD 239.8 million in 2024 and is estimated to grow at a CAGR of 5.8% to reach USD 415.9 million by 2034.

Automotive Sonic Welding Equipment Market - IMG1

The market is gaining traction as automakers increasingly prioritize lighter, stronger, and more efficient assembly methods especially for electric vehicle manufacturing and next-gen vehicle interiors. Ultrasonic welding is proving essential for joining components such as slim metals, thermoplastics, busbars, energy modules, and sensitive sensor parts. As EV production scales, this technology becomes even more vital, particularly for applications like cell tabs, wiring harnesses, and battery module connections. The process is favored for its precision and ability to deliver low-heat, non-invasive welds that maintain the integrity of delicate materials. OEMs are adopting ultrasonic systems to cut production costs, eliminate extra finishing steps, and accelerate cycle times. Automation and digital integration are reshaping the equipment landscape, with robotic arms and ultrasonic heads executing multiple welds per cycle, monitored by PLC systems, IIoT interfaces, and SPC dashboards. Real-time feedback enables process consistency and predictive maintenance. The industry is also exploring hybrid joining methods, where ultrasonic welding is combined with adhesives or mechanical fasteners to handle multi-material assemblies with complex geometries and strength requirements.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$239.8 Million
Forecast Value$415.9 Million
CAGR5.8%

In 2024, the automated equipment segment held 64% share. These systems are widely deployed across large-scale manufacturing facilities where continuous operation, speed, and repeatability are crucial. Integration with conveyor systems and robotic automation allows for uninterrupted production and uniform weld quality, making them a staple for leading OEMs across APAC, North America, and Europe. Automated setups have become essential for maintaining precision, boosting throughput, and supporting in-line quality control.

The thermoplastics segment will grow at a CAGR of 5.1% through 2034. Lightweight and easy to weld, thermoplastics are heavily used in bumpers, panels, and interior components. With the rise of hybrid and electric vehicles, demand is climbing for thermoplastic parts that can be ultrasonically joined with minimal cycle time. OEMs prefer ultrasonic welding for its accuracy and efficiency, and even smaller workshops are turning to compact systems for streamlined production on budget-conscious projects.

United States Automotive Sonic Welding Equipment Market generated USD 74.3 million in 2024. The country benefits from advanced production facilities and a rapid embrace of high-tech manufacturing methods. Automakers and Tier-1 suppliers are heavily investing in both handheld and automated ultrasonic welding systems to support EV and internal combustion vehicle lines. These systems are essential for applications like battery tabs, wiring systems, and plastic component mounting, delivering fast processing and reliable joint integrity. With rising quality and safety expectations, demand is being further driven by AI-enabled monitoring systems, robotic process integration, and traceable weld tracking-all of which contribute to improving production reliability and compliance.

Key players actively operating in the Global Automotive Sonic Welding Equipment Market include Dukane, Emerson, RINCO Ultrasonics, SONOTRONIC, Sonics & Materials, Telsonic, Shanghai Chenfeng, Herrmann Ultrasonics, Ultrasonic Engineering, and Schunk. Manufacturers in the automotive sonic welding equipment space are strengthening their market presence by expanding their automation capabilities and offering systems compatible with Industry 4.0 standards. Companies like Herrmann Ultrasonics, Emerson, and Telsonic are integrating AI and machine learning into weld quality monitoring, enabling real-time feedback and predictive maintenance. Strategic partnerships with OEMs and Tier-1 suppliers are helping them align product development with evolving EV manufacturing needs. Investments in R&D are focused on hybrid joining technologies and modular systems that allow flexible plant layouts.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Equipment
    • 2.2.3 Material
    • 2.2.4 Technology
    • 2.2.5 End Use
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing EV adoption and lightweight material use
      • 3.2.1.2 Growth of automated manufacturing and Industry 4.0 adoption
      • 3.2.1.3 Rising demand for thermoplastic components
      • 3.2.1.4 Focus on production cost reduction and higher throughput
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High upfront capital cost for automated systems
      • 3.2.2.2 Requirement for skilled operators and maintenance
    • 3.2.3 Market opportunities
      • 3.2.3.1 Expansion in EV battery assembly and modular interiors
      • 3.2.3.2 Retrofit and aftermarket spares & services
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter’s analysis
  • 3.6 Pestel analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Patent analysis
  • 3.9 Sustainability & environmental aspects
    • 3.9.1 Sustainable practices
    • 3.9.2 Waste reduction strategies
    • 3.9.3 Energy efficiency in production
    • 3.9.4 Eco-friendly Initiatives
    • 3.9.5 Carbon footprint considerations
  • 3.10 Use cases and applications
  • 3.11 Best-case scenario
  • 3.12 Cost Structure & Pricing Analysis
    • 3.12.1 Equipment Cost Breakdown
    • 3.12.2 Pricing Strategy Analysis
    • 3.12.3 Total Cost of Ownership Analysis
    • 3.12.4 Price Trend Analysis
  • 3.13 Industry Gaps & Solutions Analysis
    • 3.13.1 Current Market Inefficiencies
    • 3.13.2 Technology Gaps & Innovation Opportunities
    • 3.13.3 Company Strategies to Address Gaps
    • 3.13.4 Cost Reduction Strategies
  • 3.14 Market Maturity & Life Cycle Analysis
    • 3.14.1 Technology adoption curves
    • 3.14.2 Market saturation levels by region
    • 3.14.3 Product life cycle stages
    • 3.14.4 Innovation cycles and R&D investment trends
  • 3.15 Regional Manufacturing & Sourcing Strategies
    • 3.15.1 Manufacturing footprint optimization
    • 3.15.2 Nearshoring/reshoring trends
    • 3.15.3 Regional cost competitiveness
    • 3.15.4 Local content requirements impact

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Equipment, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 Handheld
  • 5.3 Automated
  • 5.4 Bench-Top

Chapter 6 Market Estimates & Forecast, By Material, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 Thermoplastics
  • 6.3 Metals
  • 6.4 Composites
  • 6.5 Rubber
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Continuous Ultrasonic Welding
  • 7.3 Pulsed Ultrasonic Welding
  • 7.4 Ultrasonic Spot Welding
  • 7.5 Ultrasonic Sealing

Chapter 8 Market Estimates & Forecast, By End Use, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 OEMs
  • 8.3 Aftermarket & Service Providers

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Southeast Asia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 MEA
    • 9.6.1 South Africa
    • 9.6.2 Saudi Arabia
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Dukane
    • 10.1.2 Emerson
    • 10.1.3 Herrmann Ultrasonics
    • 10.1.4 Schunk
    • 10.1.5 Sonics & Materials
    • 10.1.6 SONOTRONIC
    • 10.1.7 Telsonic
    • 10.1.8 Xfurth
  • 10.2 Regional Players
    • 10.2.1 KLN Ultraschall
    • 10.2.2 Kormax System
    • 10.2.3 Nippon Avionics
    • 10.2.4 Rinco Ultrasonics
    • 10.2.5 SEDECO
    • 10.2.6 Ultrasonic Engineering
  • 10.3 Emerging Players
    • 10.3.1 Dizo Global
    • 10.3.2 Ever Ultrasonic
    • 10.3.3 Hornwell Technology
    • 10.3.4 Maxwide Ultrasonic
    • 10.3.5 Shanghai Chenfeng
    • 10.3.6 Ultra Autosonic