封面
市場調查報告書
商品編碼
1763843

病毒載體生產市場-全球產業規模、佔有率、趨勢、機會和預測,按載體類型、工作流程、應用、最終用戶、地區和競爭情況細分,2020 年至 2030 年

Viral Vector Production Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Vector Type, By Workflow, By Application, By End User, By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024年全球病毒載體生產市場價值為67.1億美元,預計2030年將達到159.2億美元,預測期間的複合年成長率為15.45%。病毒載體生產涉及開發工程病毒,用作載體將遺傳物質遞送至目標細胞,用於治療或研究目的。這些載體在基因治療、基因編輯和疫苗開發中發揮重要作用,為治療遺傳疾病和癌症提供了精準的手段。該過程需要修改病毒基因組以消除致病特性並整合治療基因。主要的病毒載體包括腺相關病毒 (AAV)、慢病毒、腺病毒和逆轉錄病毒,每種載體的選擇均基於預期用途、目標細胞類型和所需的表達譜。已獲批准的基因療法日益成功以及研發投入的不斷增加,正在加速對高品質、可擴展病毒載體製造的需求,從而推動該領域的顯著成長。

市場概覽
預測期 2026-2030
2024年市場規模 67.1億美元
2030年市場規模 159.2億美元
2025-2030 年複合年成長率 15.45%
成長最快的領域 腺相關病毒載體
最大的市場 北美洲

關鍵市場促進因素

病毒載體生產的開創性臨床成功

主要市場挑戰

可擴展性和商業化

主要市場趨勢

製造流程最佳化

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球病毒載體生產市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按載體類型(腺病毒、AAV、慢病毒、逆轉錄病毒等)
    • 依工作流程(上游處理、載體擴增及擴展、載具回收/收穫、下游處理、純化、填充完成)
    • 按應用(基因和細胞療法開發、疫苗開發、生物製藥和藥物發現、生物醫學研究)
    • 按最終用戶(製藥和生物製藥公司、研究機構)
    • 按公司分類(2024)
    • 按地區
  • 市場地圖

第6章:北美病毒載體生產市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第7章:歐洲病毒載體生產市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第8章:亞太染料市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國病毒載體生產市場
    • 印度病毒載體生產市場
    • 韓國病毒載體生產市場
    • 日本病毒載體生產市場
    • 澳洲病毒載體生產市場

第9章:南美病毒載體生產市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東與非洲病毒載體生產市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 最新動態
  • 產品發布
  • 併購

第 13 章: 大環境分析

第 14 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品的威脅

第 15 章:競爭格局

  • Merck KGaA
  • FUJIFILM Diosynth Biotechnologies USA
  • Cobra Biologics Ltd.
  • Thermofisher Scientific Inc.
  • Waisman Biomanufacturing
  • Genezen Laboratories
  • Advanced BioScience Laboratories, Inc. (ABL inc.)
  • Novasep Holding sas
  • Orgenesis Biotech Israel Ltd (formerly ATVIO Biotech ltd.)
  • Takara Bio Inc.

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 15912

The Global Viral Vector Production Market was valued at USD 6.71 billion in 2024 and is anticipated to reach USD 15.92 billion by 2030, growing at a CAGR of 15.45% during the forecast period. Viral vector production involves the development of engineered viruses used as carriers to deliver genetic material into targeted cells for therapeutic or research purposes. These vectors are instrumental in gene therapy, gene editing, and vaccine development, offering precision in treating genetic disorders and cancers. The process entails modifying viral genomes to eliminate pathogenic properties and incorporate therapeutic genes. Key viral vectors include adeno-associated viruses (AAV), lentiviruses, adenoviruses, and retroviruses, each selected based on the intended application, target cell type, and required expression profile. The growing success of approved gene therapies and increasing R&D investments are accelerating demand for high-quality, scalable viral vector manufacturing, driving significant growth in this segment.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 6.71 Billion
Market Size 2030USD 15.92 Billion
CAGR 2025-203015.45%
Fastest Growing SegmentAdeno-Associated Virus Vectors
Largest MarketNorth America

Key Market Drivers

Pioneering Clinical Success of Viral Vector Production

The clinical success of gene therapies leveraging viral vectors has played a critical role in driving market growth. Breakthroughs such as Luxturna, approved by the FDA for treating Leber congenital amaurosis (LCA), and Zolgensma for spinal muscular atrophy (SMA), underscore the transformative potential of viral vector-based treatments. Zolgensma alone has treated over 3,000 patients globally as of 2023. Additionally, promising advancements in hemophilia B treatments, utilizing AAV vectors to restore clotting factor IX levels, highlight the clinical viability of these delivery tools. Lentiviral vectors have also been widely adopted in CAR-T cell therapies targeting blood cancers. These successes demonstrate the therapeutic efficacy, safety, and long-term benefits of viral vectors, prompting increased investment and adoption across both academic and commercial sectors.

Key Market Challenges

Scalability and Commercialization

Scaling up viral vector production for commercial use poses significant operational and financial hurdles. Transitioning from lab-scale to large-scale manufacturing requires overcoming challenges such as maintaining yield consistency, optimizing cell culture conditions, and controlling vector integrity under scaled processes. High-yield production must address issues related to oxygen transfer, nutrient delivery, and shear stress in bioreactors. Additionally, ensuring quality and stability of viral vectors during purification and fill-finish steps is essential but complex. Building compliant manufacturing facilities requires large capital investment and adherence to strict regulatory standards. These scale-related constraints delay commercialization timelines, increase production costs, and limit patient access to advanced therapies, especially when demand accelerates.

Key Market Trends

Manufacturing Process Optimization

Process optimization is a critical trend shaping the viral vector production landscape. Industry players are focusing on increasing yield, consistency, and scalability through innovations in upstream and downstream workflows. Efforts include enhancing cell line productivity, refining transfection protocols, and automating quality control. Manufacturers are standardizing production processes to ensure reproducibility across facilities, which aids in regulatory compliance and technology transfer. Moreover, improvements in purification and fill-finish steps are helping reduce impurities and boost product quality. Environmentally sustainable manufacturing approaches-such as reducing waste and energy usage-are also gaining prominence. These optimizations not only lower production costs but also ensure that therapies reach patients more efficiently and reliably.

Key Market Players

  • Merck KGaA
  • FUJIFILM Diosynth Biotechnologies U.S.A
  • Cobra Biologics Ltd.
  • Thermo Fisher Scientific Inc.
  • Waisman Biomanufacturing
  • Genezen Laboratories
  • Advanced BioScience Laboratories, Inc. (ABL Inc.)
  • Novasep Holding S.A.S.
  • Orgenesis Biotech Israel Ltd (formerly ATVIO Biotech Ltd.)
  • Takara Bio Inc.

Report Scope:

In this report, the Global Viral Vector Production Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Viral Vector Production Market, By Vector Type:

  • Adenovirus
  • AAV
  • Lentivirus
  • Retrovirus
  • Others

Viral Vector Production Market, By Workflow:

  • Upstream Processing
  • Vector Amplification and Expansion
  • Vector Recovery/Harvesting
  • Downstream Processing
  • Purification
  • Fill Finish

Viral Vector Production Market, By Application:

  • Gene and Cell Therapy Development
  • Vaccine Development
  • Biopharmaceutical and Pharmaceutical Discovery
  • Biomedical Research

Viral Vector Production Market, By End User:

  • Pharmaceutical and Biopharmaceutical Companies
  • Research Institutes

Viral Vector Production Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Australia
    • Japan
  • Europe
    • Germany
    • France
    • United Kingdom
    • Spain
    • Italy
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Viral Vector Production Market.

Available Customizations:

Global Viral Vector Production Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Viral Vector Production Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Vector Type (Adenovirus, AAV, Lentivirus, Retrovirus, others)
    • 5.2.2. By Workflow (Upstream Processing, Vector amplification and expansion, Vector recovery/harvesting, Downstream Processing, Purification, Fill finish)
    • 5.2.3. By Application (Gene and Cell Therapy Development, Vaccine Development, Biopharmaceutical and Pharmaceutical Discovery, Biomedical Research)
    • 5.2.4. By End User (Pharmaceutical and Biopharmaceutical Companies, Research Institutes)
    • 5.2.5. By Company (2024)
    • 5.2.6. By Region
  • 5.3. Market Map

6. North America Viral Vector Production Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Vector Type
    • 6.2.2. By Workflow
    • 6.2.3. By Application
    • 6.2.4. By End User
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Viral Vector Production Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Vector Type
        • 6.3.1.2.2. By Workflow
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End User
    • 6.3.2. Mexico Viral Vector Production Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Vector Type
        • 6.3.2.2.2. By Workflow
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End User
    • 6.3.3. Canada Viral Vector Production Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Vector Type
        • 6.3.3.2.2. By Workflow
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End User

7. Europe Viral Vector Production Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Vector Type
    • 7.2.2. By Workflow
    • 7.2.3. By Application
    • 7.2.4. By End User
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Viral Vector Production Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Vector Type
        • 7.3.1.2.2. By Workflow
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User
    • 7.3.2. Germany Viral Vector Production Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Vector Type
        • 7.3.2.2.2. By Workflow
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User
    • 7.3.3. United Kingdom Viral Vector Production Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Vector Type
        • 7.3.3.2.2. By Workflow
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User
    • 7.3.4. Italy Viral Vector Production Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Vector Type
        • 7.3.4.2.2. By Workflow
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End User
    • 7.3.5. Spain Viral Vector Production Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Vector Type
        • 7.3.5.2.2. By Workflow
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End User

8. Asia-Pacific Viral Vector Production Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Vector Type
    • 8.2.2. By Workflow
    • 8.2.3. By Application
    • 8.2.4. By End User
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Viral Vector Production Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Vector Type
        • 8.3.1.2.2. By Workflow
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User
    • 8.3.2. India Viral Vector Production Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Vector Type
        • 8.3.2.2.2. By Workflow
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User
    • 8.3.3. South Korea Viral Vector Production Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Vector Type
        • 8.3.3.2.2. By Workflow
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User
    • 8.3.4. Japan Viral Vector Production Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Vector Type
        • 8.3.4.2.2. By Workflow
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User
    • 8.3.5. Australia Viral Vector Production Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Vector Type
        • 8.3.5.2.2. By Workflow
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User

9. South America Viral Vector Production Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Vector Type
    • 9.2.2. By Workflow
    • 9.2.3. By Application
    • 9.2.4. By End User
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Viral Vector Production Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Vector Type
        • 9.3.1.2.2. By Workflow
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User
    • 9.3.2. Argentina Viral Vector Production Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Vector Type
        • 9.3.2.2.2. By Workflow
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User
    • 9.3.3. Colombia Viral Vector Production Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Vector Type
        • 9.3.3.2.2. By Workflow
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User

10. Middle East and Africa Viral Vector Production Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Vector Type
    • 10.2.2. By Workflow
    • 10.2.3. By Application
    • 10.2.4. By End User
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Viral Vector Production Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Vector Type
        • 10.3.1.2.2. By Workflow
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User
    • 10.3.2. Saudi Arabia Viral Vector Production Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Vector Type
        • 10.3.2.2.2. By Workflow
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User
    • 10.3.3. UAE Viral Vector Production Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Vector Type
        • 10.3.3.2.2. By Workflow
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Merck KGaA
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. FUJIFILM Diosynth Biotechnologies U.S.A
  • 15.3. Cobra Biologics Ltd.
  • 15.4. Thermofisher Scientific Inc.
  • 15.5. Waisman Biomanufacturing
  • 15.6. Genezen Laboratories
  • 15.7. Advanced BioScience Laboratories, Inc. (ABL inc.)
  • 15.8. Novasep Holding s.a.s.
  • 15.9. Orgenesis Biotech Israel Ltd (formerly ATVIO Biotech ltd.)
  • 15.10. Takara Bio Inc.

16. Strategic Recommendations

17. About Us & Disclaimer