封面
市場調查報告書
商品編碼
1738272

腫瘤學和免疫學流式細胞儀市場——全球行業規模、佔有率、趨勢、競爭、機會和預測,按類型、按技術、按產品、按應用、按最終用戶、按地區和競爭進行細分,2020 年至 2030 年

Flow Cytometry in Oncology and Immunology Market - Global Industry Size, Share, Trends, Competition, Opportunity, and Forecast, Segmented By Type, By Technology, By Offering, By Application, By End User, By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球流式細胞儀在腫瘤學和免疫學市場的規模為 34.1 億美元,預計到 2030 年將達到 54.7 億美元,預測期內的複合年成長率為 8.19%。流式細胞儀在癌症和免疫學研究中的日益普及,以及先進流式細胞儀的不斷發展,推動了市場的成長。隨著癌症成為全球主要死因之一,免疫腫瘤學作為一門重要學科日益受到重視,對高精度診斷和監測工具的需求日益成長。流式細胞儀已成為評估各種樣本中細胞特性、免疫標記和腫瘤抗原不可或缺的工具。下一代流式細胞儀工具與治療監測和診斷的結合,尤其是在免疫療法和個人化治療的臨床試驗中,正在推動全球採用。再加上不斷增加的研究投入和全球對早期疾病檢測的重視,這些因素共同擴大了流式細胞儀在腫瘤學和免疫學中的應用範圍和範圍。

市場概覽
預測期 2026-2030
2024年市場規模 34.1億美元
2030年市場規模 54.7億美元
2025-2030 年複合年成長率 8.19%
成長最快的領域 軟體
最大的市場 北美洲

關鍵市場促進因素

癌症發生率上升推動診斷需求

主要市場挑戰

高成本和操作複雜性

主要市場趨勢

與人工智慧和機器學習的整合

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球腫瘤學與免疫學流式細胞儀市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按類型(免疫學、腫瘤學)
    • 依技術分類(基於細胞的流式細胞儀、基於珠子的流式細胞儀)
    • 依產品提供(試劑、儀器及耗材軟體)
    • 按應用(轉化研究、臨床研究)
    • 按最終用戶(醫院、診斷實驗室和參考實驗室、製藥和生物技術公司、學術研究機構、合約研究組織等)
    • 按地區(北美、歐洲、亞太、南美、中東和非洲)
    • 按公司分類(2024)
  • 市場地圖
    • 按類型
    • 依技術
    • 透過提供
    • 按應用
    • 按最終用戶
    • 按地區

第6章:北美腫瘤學與免疫學流式細胞儀市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲腫瘤學與免疫學流式細胞儀市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙

第8章:亞太地區腫瘤學與免疫學流式細胞儀市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 日本
    • 印度
    • 韓國
    • 澳洲

第9章:南美洲腫瘤學和免疫學流式細胞儀市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲腫瘤學和免疫學流式細胞儀市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第 13 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品/服務的威脅

第 14 章:腫瘤學和免疫學流式細胞儀市場的全球市場:SWOT 分析

第 15 章:競爭格局

  • Danaher Corporation
  • Merck KGaA
  • Miltenyi Biotec
  • Neo-Genomics Laboratories, Inc.
  • Thermo Fisher Scientific Inc.
  • Cell Signaling Technology, Inc.
  • Becton, Dickinson and Company
  • Agilent Technologies, Inc.
  • DiaSorin SpA
  • OPKO Health, Inc.

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 15020

The Global Flow Cytometry in Oncology and Immunology Market was valued at USD 3.41 billion in 2024 and is projected to reach USD 5.47 billion by 2030, growing at a CAGR of 8.19% during the forecast period. Market growth is propelled by the increasing utility of flow cytometry in cancer and immunology research, alongside the evolution of advanced flow cytometers. With cancer ranking among the leading causes of death globally, and immuno-oncology gaining ground as a crucial discipline, there is rising demand for high-precision diagnostic and monitoring tools. Flow cytometry has become indispensable in evaluating cell characteristics, immune markers, and tumor antigens across various sample types. The integration of next-generation flow cytometry tools with therapeutic monitoring and diagnostics, especially in clinical trials for immunotherapies and personalized treatments, is boosting global adoption. Combined with rising research investments and the global emphasis on early disease detection, these factors are collectively expanding the reach and application of flow cytometry in both oncology and immunology.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 3.41 Billion
Market Size 2030USD 5.47 Billion
CAGR 2025-20308.19%
Fastest Growing SegmentSoftware
Largest MarketNorth America

Key Market Drivers

Rising Cancer Incidence Driving Diagnostic Demand

The growing global cancer burden is a key driver for the adoption of flow cytometry in oncology diagnostics. This technique is critical for diagnosing and monitoring blood cancers like leukemia and lymphoma, enabling precise cellular analysis and biomarker identification. As per WHO, cancer accounted for nearly 10 million deaths in 2020, and GLOBOCAN estimates that new cancer cases will surge past 28 million by 2040. Flow cytometry is also instrumental in detecting minimal residual disease (MRD) and supporting treatment decisions. With increasing adoption of immunotherapies and personalized oncology treatments, flow cytometry's role in immune profiling and response monitoring is expanding. In support, organizations like the U.S. National Cancer Institute have committed billions to precision medicine and diagnostics infrastructure, fostering widespread implementation. These efforts underscore flow cytometry's importance in the future of cancer diagnosis and treatment.

Key Market Challenges

High Cost and Operational Complexity

Despite its clinical and research value, flow cytometry adoption is hindered by high operational and capital expenses. The cost of acquiring high-end instruments, software, and consumables is substantial, making it challenging for institutions in developing regions to invest. Additionally, flow cytometry requires technical expertise for calibration, analysis, and interpretation-skills that are often limited in resource-constrained settings. Complex data interpretation can introduce variability and errors, further complicating implementation. The lack of infrastructure and diagnostic capacity in many low- and middle-income countries reinforces disparities in access to this technology. According to WHO data, these regions have significantly fewer diagnostic labs per capita, highlighting access challenges. Addressing these cost and skill barriers is essential to ensuring broader and more equitable utilization of flow cytometry worldwide.

Key Market Trends

Integration with Artificial Intelligence and Machine Learning

A transformative trend in the flow cytometry space is the integration of artificial intelligence (AI) and machine learning (ML) into data processing workflows. Traditional manual gating and analysis can be time-consuming and prone to human error. AI and ML technologies now streamline these processes by automating gating, improving pattern recognition, and extracting high-dimensional insights from complex datasets. In oncology, ML algorithms are being applied to predict treatment outcomes using immune signatures from flow cytometry data. In immunology, these tools aid in identifying rare cell subsets and monitoring immune dynamics with high precision. Global research initiatives like NIH's Bridge2AI and the EU's Horizon Europe are actively funding the incorporation of AI into diagnostics, including flow cytometry. This convergence of data science with laboratory medicine is poised to elevate accuracy, reproducibility, and clinical utility, marking a pivotal evolution in how flow cytometry is applied in healthcare.

Key Market Players

  • Danaher Corporation
  • Merck KGaA
  • Miltenyi Biotec
  • Neo-Genomics Laboratories, Inc.
  • Thermo Fisher Scientific Inc.
  • Cell Signaling Technology, Inc.
  • Becton, Dickinson and Company
  • Agilent Technologies, Inc.
  • DiaSorin S.p.A
  • OPKO Health, Inc.

Report Scope:

In this report, the Global Flow Cytometry in Oncology and Immunology Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Flow Cytometry in Oncology and Immunology Market, By Type:

  • Immunology
  • Oncology

Flow Cytometry in Oncology and Immunology Market, By Technology:

  • Cell-based flow cytometry
  • Bead-based flow cytometry

Flow Cytometry in Oncology and Immunology Market, By Offering:

  • Reagents
  • Instruments
  • Consumables
  • Software

Flow Cytometry in Oncology and Immunology Market, By Application:

  • Translational Research
  • Clinical Research

Flow Cytometry in Oncology and Immunology Market, By End User:

  • Hospitals
  • Diagnostic Laboratories
  • Reference Laboratories
  • Pharmaceutical and Biotechnology Companies
  • Academic Research Institutes
  • Contract Research Organizations
  • Others

Flow Cytometry in Oncology and Immunology Market, By Region:

  • North America
    • United States
    • Mexico
    • Canada
  • Europe
    • France
    • Germany
    • United Kingdom
    • Italy
    • Spain
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Japan
    • Australia
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East and Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Flow Cytometry in Oncology and Immunology Market.

Available Customizations:

Global Flow Cytometry in Oncology and Immunology Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Flow Cytometry in Oncology and Immunology Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Immunology, Oncology)
    • 5.2.2. By Technology (Cell-based flow cytometry, Bead-based flow cytometry)
    • 5.2.3. By Offering (Reagents, Instruments, and Consumables Software)
    • 5.2.4. By Application (Translational Research, Clinical Research)
    • 5.2.5. By End User (Hospitals, Diagnostic Laboratories, and Reference Laboratories, Pharmaceutical and Biotechnology Companies, Academic Research Institutes, Contract Research Organizations, and Others)
    • 5.2.6. By Region (North America, Europe, Asia Pacific, South America, Middle East and Africa)
    • 5.2.7. By Company (2024)
  • 5.3. Market Map
    • 5.3.1. By Type
    • 5.3.2. By Technology
    • 5.3.3. By Offering
    • 5.3.4. By Application
    • 5.3.5. By End User
    • 5.3.6. By Region

6. North America Flow Cytometry in Oncology and Immunology Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Technology
    • 6.2.3. By Offering
    • 6.2.4. By Application
    • 6.2.5. By End User
    • 6.2.6. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Flow Cytometry in Oncology and Immunology Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Offering
        • 6.3.1.2.4. By Application
        • 6.3.1.2.5. By End User
    • 6.3.2. Canada Flow Cytometry in Oncology and Immunology Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Offering
        • 6.3.2.2.4. By Application
        • 6.3.2.2.5. By End User
    • 6.3.3. Mexico Flow Cytometry in Oncology and Immunology Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Offering
        • 6.3.3.2.4. By Application
        • 6.3.3.2.5. By End User

7. Europe Flow Cytometry in Oncology and Immunology Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Technology
    • 7.2.3. By Offering
    • 7.2.4. By Application
    • 7.2.5. By End User
    • 7.2.6. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Flow Cytometry in Oncology and Immunology Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Offering
        • 7.3.1.2.4. By Application
        • 7.3.1.2.5. By End User
    • 7.3.2. France Flow Cytometry in Oncology and Immunology Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Offering
        • 7.3.2.2.4. By Application
        • 7.3.2.2.5. By End User
    • 7.3.3. United Kingdom Flow Cytometry in Oncology and Immunology Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Offering
        • 7.3.3.2.4. By Application
        • 7.3.3.2.5. By End User
    • 7.3.4. Italy Flow Cytometry in Oncology and Immunology Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Offering
        • 7.3.4.2.4. By Application
        • 7.3.4.2.5. By End User
    • 7.3.5. Spain Flow Cytometry in Oncology and Immunology Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Offering
        • 7.3.5.2.4. By Application
        • 7.3.5.2.5. By End User

8. Asia-Pacific Flow Cytometry in Oncology and Immunology Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Technology
    • 8.2.3. By Offering
    • 8.2.4. By Application
    • 8.2.5. By End User
    • 8.2.6. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Flow Cytometry in Oncology and Immunology Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Offering
        • 8.3.1.2.4. By Application
        • 8.3.1.2.5. By End User
    • 8.3.2. Japan Flow Cytometry in Oncology and Immunology Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Offering
        • 8.3.2.2.4. By Application
        • 8.3.2.2.5. By End User
    • 8.3.3. India Flow Cytometry in Oncology and Immunology Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Offering
        • 8.3.3.2.4. By Application
        • 8.3.3.2.5. By End User
    • 8.3.4. South Korea Flow Cytometry in Oncology and Immunology Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Offering
        • 8.3.4.2.4. By Application
        • 8.3.4.2.5. By End User
    • 8.3.5. Australia Flow Cytometry in Oncology and Immunology Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Offering
        • 8.3.5.2.4. By Application
        • 8.3.5.2.5. By End User

9. South America Flow Cytometry in Oncology and Immunology Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Technology
    • 9.2.3. By Offering
    • 9.2.4. By Application
    • 9.2.5. By End User
    • 9.2.6. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Flow Cytometry in Oncology and Immunology Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Offering
        • 9.3.1.2.4. By Application
        • 9.3.1.2.5. By End User
    • 9.3.2. Argentina Flow Cytometry in Oncology and Immunology Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Offering
        • 9.3.2.2.4. By Application
        • 9.3.2.2.5. By End User
    • 9.3.3. Colombia Flow Cytometry in Oncology and Immunology Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Offering
        • 9.3.3.2.4. By Application
        • 9.3.3.2.5. By End User

10. Middle East and Africa Flow Cytometry in Oncology and Immunology Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Technology
    • 10.2.3. By Offering
    • 10.2.4. By Application
    • 10.2.5. By End User
    • 10.2.6. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. UAE Flow Cytometry in Oncology and Immunology Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Offering
        • 10.3.1.2.4. By Application
        • 10.3.1.2.5. By End User
    • 10.3.2. Saudi Arabia Flow Cytometry in Oncology and Immunology Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Offering
        • 10.3.2.2.4. By Application
        • 10.3.2.2.5. By End User
    • 10.3.3. South Africa Flow Cytometry in Oncology and Immunology Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Offering
        • 10.3.3.2.4. By Application
        • 10.3.3.2.5. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challanges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products/Services

14. Global Flow Cytometry in Oncology and Immunology Market: SWOT Analysis

15. Competitive Landscape

  • 15.1. Danaher Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. Merck KGaA
  • 15.3. Miltenyi Biotec
  • 15.4. Neo-Genomics Laboratories, Inc.
  • 15.5. Thermo Fisher Scientific Inc.
  • 15.6. Cell Signaling Technology, Inc.
  • 15.7. Becton, Dickinson and Company
  • 15.8. Agilent Technologies, Inc.
  • 15.9. DiaSorin S.p.A
  • 15.10. OPKO Health, Inc.

16. Strategic Recommendations

17. About Us & Disclaimer