封面
市場調查報告書
商品編碼
1889283

電信人工智慧和分析市場預測至2032年:按組件、公司規模、營運商類型、部署類型、應用和地區分類的全球分析

Telecom AI and Analytics Market Forecasts to 2032 - Global Analysis By Component (Software and Services), Enterprise Size, Operator Type, Deployment, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 預測,全球電信人工智慧和分析市場規模預計將在 2025 年達到 112.8 億美元,到 2032 年達到 311.1 億美元,預測期內複合年成長率 (CAGR) 為 15.6%。電信人工智慧和分析正在透過幫助服務供應商提升網路效能、提高客戶滿意度和實現複雜操作的自動化,從而改變整個產業。借助人工智慧模型、預測分析和巨量資料分析,電信業者能夠及早發現問題、最大限度地減少停機時間並保持更高的網路穩定性。這些技術提高了營運效率、降低了營運成本,並增強了客戶支援、收費和網路最佳化等領域的決策能力。隨著 5G、物聯網和雲端生態系驅動的資料呈指數級成長,先進的分析技術使電信公司能夠加強安全性、發現模式並改善策略規劃。這種發展趨勢使服務提供者能夠更快地進行創新,並提供更聰明、更可靠的服務。

根據GSMA的數據,電信業在採用生成式人工智慧方面領先其他產業,70%的電信業者已全面或部分部署了人工智慧技術。此外,89%的電信業者計劃在下一會計年度投資生成式人工智慧,這一比例在所有產業中最高,與保險業並列。

網路自動化和營運效率的需求日益成長

電信業者越來越依賴自動化來控制營運成本並維持可靠的效能,而人工智慧和分析技術已成為不可或缺的工具。人工智慧可以自動管理資源、最佳化頻寬分配並實現節能的網路營運。預測分析透過及早發現技術問題來減少計劃外維護。自動化工作流程可以加快配置、部署和問題解決速度,從而減少對人工流程的依賴。隨著虛擬化系統的擴展、物聯網的普及以及邊緣應用的興起,自動化對於維持服務穩定性至關重要。提高營運效率、提升生產力以及應對日益複雜的網路需求,正推動電信業者快速採用人工智慧和分析技術。

高昂的實施成本和整合挑戰

電信業採用人工智慧和分析技術面臨高昂的實施成本和複雜的系統整合需求,這極大地限制了其發展。部署先進的人工智慧工具需要大量的資金投入,尤其是在替換過時的基礎設施和處理大型資料集方面。許多中小電信業者缺乏足夠的預算或專業知識來有效地完成這種轉型。將人工智慧整合到現有網路中常常面臨許多挑戰,包括相容性問題、資料結構分散化以及對專業技術人員的需求。此外,持續的培訓、雲端運算和模型維護成本也加重了營運商的負擔。這些財務和營運方面的限制阻礙了人工智慧技術的廣泛應用,也使得電信業者無法充分利用人工智慧驅動的分析能力。

對個人化客戶體驗解決方案的需求日益成長

用戶對客製化數位體驗的期望日益成長,為電信業的AI和分析技術創造了巨大的機會。 AI能夠分析使用者使用模式、使用者旅程和即時行為,幫助營運商設計個人化服務套餐並提供相關提案。分析工具還有助於改善客戶流失預測模型、識別盈利客戶群並開發更有效的客戶參與方式。智慧聊天機器人和自動化支援系統可以提高服務品質並縮短回應時間。隨著用戶對無縫和個人化互動的需求不斷成長,電信業者可以利用AI洞察來凸顯其價值主張並建立持久的客戶忠誠度。這種對個人化日益重視正在加速AI驅動的客戶分析和體驗管理平台的普及應用。

科技快速變革和激烈的競爭壓力

人工智慧、分析技術和電信基礎設施創新領域的快速發展帶來了巨大的競爭壓力,威脅著市場穩定。持續的升級、技術變革以及新興解決方案供應商的崛起,使得營運商難以保持技術領先。小規模的電信業者面臨的壓力最大,因為它們往往缺乏頻繁現代化所需的財力和技術資源。快速變化增加了現有人工智慧投資過時的風險,從而降低了整體投資回報率。這種動態環境迫使電信公司不斷重新評估其策略,造成了營運上的不確定性。對快速創新的需求最終會使長期規劃變得複雜,並減緩人工智慧解決方案的穩定普及。

新冠疫情的感染疾病:

感染疾病透過數位化和變革網路營運,對電信人工智慧和分析市場產生了重大影響。隨著遠端連線需求的激增,營運商廣泛使用基於人工智慧的工具來監控網路、管理流量高峰並維持服務品質。分析在需求預測、頻寬最佳化和支援大規模數位化使用方面變得至關重要。疫情也促使電信業者加快對自動化、雲端平台和虛擬化系統的投資,以提高網路韌性。儘管如此,經濟的不確定性和供應鏈中斷仍然延緩了一些人工智慧舉措。整體而言,疫情的影響喜憂參半,既推動了快速創新,也減緩了某些技術的應用。

預計在預測期內,軟體領域將佔據最大的市場佔有率。

在預測期內,軟體領域預計將佔據最大的市場佔有率,這主要得益於市場對靈活智慧平台日益成長的需求,這些平台融合了即時分析、機器學習和預測功能。電信業者更傾向於採用軟體主導的解決方案,以增強網路營運、提升客戶參與並實現關鍵業務流程的自動化。這些人工智慧平台易於部署在雲端和邊緣環境中,能夠滿足現代電信基礎設施不斷變化的需求。隨著營運商對舊有系統進行現代化改造並推動數位轉型,人工智慧軟體對於產生洞察和最佳化工作流程至關重要。因此,軟體領域在該市場中佔據最強勁的地位。

預計在預測期內,雲端基礎市場將實現最高的複合年成長率。

由於其無與倫比的敏捷性、擴充性和經濟高效的部署,預計在預測期內,雲端基礎市場將實現最高的成長率。電信營運商正在採用雲端環境,使其能夠處理大量資料流、執行即時分析並利用人工智慧功能,而無需依賴複雜的本地硬體。雲端解決方案支援輕鬆升級、與 5G 和邊緣運算的無縫整合以及高級分析的快速部署。隨著數位轉型的推進,電信營運商正在轉向雲端原生人工智慧工具,以提升網路效能、增強客戶參與並最佳化營運。這種全行業向雲端智慧的轉變已使雲端基礎市場穩居成長最快的類別之列。

佔比最大的地區:

預計在整個預測期內,北美將佔據最大的市場佔有率,這主要得益於其先進的基礎設施、激烈的市場競爭以及電信營運商對人工智慧的早期應用。該地區的電信公司正在大力投資分析和機器學習,以提高5G效率、實現網路任務自動化並提升客戶服務品質。強大的雲端運算和邊緣運算平台為這項轉型提供了支持,而有利的監管環境則促進了創新。此外,頂尖科技公司的存在和強大的研發能力也使得預測模型的大規模部署成為可能。因此,北美將繼續成為推動電信人工智慧和分析技術發展的最重要地區。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,這主要得益於數位基礎設施的擴張、智慧型手機和寬頻使用量的成長,以及中國和印度等主要市場5G的快速部署。該地區的電信營運商正致力於利用人工智慧驅動的分析來管理不斷成長的流量負載、提供客製化服務並提高網路效率。此外,政府的支持性政策、城市數位化計劃和物聯網的普及也推動了相關投資。在對數據密集型應用的需求不斷成長的推動下,亞太地區正崛起為人工智慧主導電信轉型中最具活力和成長最快的地區。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,對主要國家進行市場估算與預測,複合年成長率(註:可行性需確認)
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 摘要
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球電信人工智慧和分析市場(按組件分類)

  • 軟體
  • 服務

第6章:全球電信人工智慧與分析市場(依公司規模分類)

  • 中小企業
  • 主要企業

7. 全球電信人工智慧和分析市場(按營運商類型分類)

  • 僅提供行動服務的營運商
  • 固網營運商
  • 收斂算子

第8章:全球電信人工智慧和分析市場(按部署類型分類)

  • 雲端基礎的
  • 本地部署

9. 全球電信人工智慧和分析市場(按應用分類)

  • 客戶分析
  • 網路流量最佳化
  • 故障診斷和預測性維護
  • 詐欺偵測與安全
  • 虛擬助理和聊天機器人

第10章:全球電信人工智慧和分析市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • IBM Corporation
  • Microsoft Corporation
  • Intel Corporation
  • AT&T;
  • Cisco Systems
  • Nuance Communications
  • Salesforce
  • Nvidia
  • Amazon Web Services(AWS)
  • Nokia
  • Huawei Technologies Co. Ltd
  • Amdocs Inc.
  • Vodafone Ltd.
  • SK Telecom
  • American Tower Corporation
Product Code: SMRC32743

According to Stratistics MRC, the Global Telecom AI and Analytics Market is accounted for $11.28 billion in 2025 and is expected to reach $31.11 billion by 2032 growing at a CAGR of 15.6% during the forecast period. Telecom AI and analytics are reshaping the industry by helping service providers boost network performance, elevate customer satisfaction, and automate complex operations. Using AI models, predictive insights, and large-scale data analysis, telecom operators can identify issues early, minimize downtime, and maintain stronger network stability. These technologies improve operational efficiency, cut operational expenses, and enhance decision-making across areas such as customer support, billing, and network optimization. With rapid data growth from 5G, IoT, and cloud ecosystems, advanced analytics enable telecom firms to bolster security, uncover patterns, and refine strategic planning. This evolution empowers providers to innovate quickly and deliver smarter, more reliable services.

According to GSMA data, telecoms are ahead of most industries in generative AI adoption, with 70% of telcos having fully or partially implemented AI technologies. Furthermore, 89% of telecom operators expect to invest in generative AI in the next financial year, the joint highest alongside insurance.

Market Dynamics:

Driver:

Increasing need for network automation and operational efficiency

Telecom operators are increasingly turning to automation to control operational expenses and maintain reliable performance, making AI and analytics essential tools. AI automates resource management, improves bandwidth distribution, and supports energy-efficient network operations. Predictive analytics help reduce unexpected maintenance by detecting technical issues early. Automated workflows accelerate provisioning, configuration, and issue resolution, lowering reliance on manual processes. With expanding virtualized systems, IoT deployments, and edge-based applications, automation is critical for maintaining service stability. The push to streamline operations, enhance productivity, and manage growing network complexity is driving telecom providers to adopt AI and analytics at a rapid pace.

Restraint:

High implementation costs and integration challenges

The adoption of AI and analytics in telecom is heavily restricted by high deployment expenses and complex system integration needs. Advanced AI tools demand major financial investment, especially when replacing old infrastructure and processing massive data sets. Many smaller telecom firms lack the budget and expertise to manage these transitions efficiently. Integrating AI with existing networks often leads to compatibility hurdles, fragmented data structures, and the requirement for skilled professionals. Ongoing costs tied to training, cloud computing, and model maintenance further add to the burden. These financial and operational constraints delay broader adoption, preventing telecom operators from maximizing AI-enabled analytical capabilities.

Opportunity:

Rising demand for personalized customer experience solutions

Increasing expectations for customized digital experiences are generating significant opportunities for AI and analytics in the telecom industry. With the ability to study usage patterns, customer journeys, and real-time behavior, AI helps operators design personalized service bundles and deliver relevant recommendations. Analytics tools also strengthen churn prediction models, highlight profitable customer groups, and guide smarter engagement approaches. Intelligent chatbots and automated support systems enhance service quality and reduce response times. As users seek seamless, tailored interactions, telecom providers can leverage AI insights to differentiate their offerings and build lasting loyalty. This growing focus on personalization accelerates adoption of AI-driven customer analytics and experience management platforms.

Threat:

Rapid technological changes and high competitive pressure

The fast pace of innovation in AI, analytics, and telecom infrastructure creates significant competitive pressure that threatens market stability. Constant upgrades, shifting technologies, and emerging solution providers make it challenging for operators to remain up to date. Smaller telecom firms face the greatest burden, as they often lack the financial and technical capacity for frequent modernization. Rapid changes also heighten the risk of existing AI investments becoming obsolete, lowering overall return on investment. This dynamic environment forces telecom companies to continually reassess strategies, causing operational uncertainty. The need to innovate quickly ultimately complicates long-term planning and slows the steady adoption of AI solutions.

Covid-19 Impact:

Covid-19 had a major influence on the telecom AI and analytics market by accelerating digital adoption and transforming network operations. As remote connectivity needs surged, operators relied heavily on AI-based tools to monitor networks, manage traffic spikes, and ensure uninterrupted service quality. Analytics became crucial for forecasting demand, optimizing bandwidth, and supporting high-volume digital usage. The crisis also encouraged telecom providers to invest more in automation, cloud platforms, and virtualized systems to improve resilience. Despite this growth, economic instability and disrupted supply chains delayed certain AI initiatives. Overall, the pandemic created mixed effects, driving rapid innovation while also slowing some technological deployments.

The software segment is expected to be the largest during the forecast period

The software segment is expected to account for the largest market share during the forecast period, supported by growing demand for flexible, intelligent platforms that combine real-time analytics, machine learning, and predictive capabilities. Telecom companies favor software-driven solutions because they enhance network operations, improve customer engagement, and automate key tasks. These AI platforms are easily deployed in cloud and edge environments, catering to the evolving needs of modern telecom infrastructures. As operators modernize legacy systems and scale their digital transformation, AI software becomes essential for insight generation and optimizing workflows. Consequently, the software segment holds the strongest position in this market.

The cloud-based segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cloud-based segment is predicted to witness the highest growth rate because it offers unmatched agility, scalability, and cost-efficient deployment. Telecom companies are adopting cloud environments to process massive data streams, perform real-time analytics, and utilize AI capabilities without relying on complex on-premise hardware. Cloud solutions support effortless upgrades, smooth integration with 5G and edge computing, and quick implementation of advanced analytics. With digital transformation rising, operators depend on cloud-native AI tools to boost network performance, enhance customer engagement, and optimize operations. This industry-wide shift toward cloud intelligence firmly establishes the cloud-based segment as the highest-growth rate category.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, bolstered by cutting-edge infrastructure, fierce competition, and early uptake of AI by operators. Telecom firms in this region are investing heavily in analytics and machine learning to improve 5G efficiency, automate network tasks, and boost customer service quality. Robust cloud and edge computing platforms support this shift, and favorable regulations encourage innovation. Additionally, the presence of top-tier technology companies and strong research capabilities enables large-scale implementation of predictive models. Consequently, North America remains the most influential region in pushing forward the growth of telecom AI analytics.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to its expanding digital infrastructure, rising smart phone and broadband usage, and fast-paced 5G deployment in major markets such as China and India. Telecom companies in this region are turning to AI-powered analytics to manage increasing traffic loads, provide tailored services, and improve network efficiency. In addition, supportive government policies, urban digitization projects, and IoT adoption are driving investments. With rising demand for data-heavy applications, Asia Pacific emerges as the most vibrant and rapidly expanding region for AI-driven telecom transformation.

Key players in the market

Some of the key players in Telecom AI and Analytics Market include IBM Corporation , Microsoft Corporation, Intel Corporation, AT&T, Cisco Systems, Nuance Communications, Salesforce, Nvidia, Amazon Web Services (AWS), Nokia, Huawei Technologies Co. Ltd, Amdocs Inc., Vodafone Ltd., SK Telecom and American Tower Corporation.

Key Developments:

In November 2025, IBM and Atruvia AG have sealed a long-term collaboration that paves the way for sustainable and state-of-the-art IT platforms for the banking of tomorrow. Atruvia will use IBM z17, which was announced earlier this year, as a cornerstone supports its mission critical operations including the core banking system.

In November 2025, Nokia and Latvijas Mobilais Telefons (LMT) announced a strategic agreement to integrate Nokia's cutting-edge 5G radio technology with LMT's proven defense solutions. This collaboration will result in a high-capacity, secure, and resilient tactical communications system specifically designed for dedicated use cases in the region.

In October 2025, Cisco is launching a new routing system built for the intense traffic of artificial-intelligence workloads between data centers. Routing systems use AI algorithms to direct and manage the flow of tasks, information, or requests in various systems and applications. Cisco 8223 is optimized to efficiently and securely connect data centers and power the next generation of AI workloads.

Components Covered:

  • Software
  • Services

Enterprise Sizes Covered:

  • Small & Medium Enterprises (SMEs)
  • Large Enterprises

Operator Types Covered:

  • Mobile-Only Operators
  • Fixed-Line-Only Operators
  • Converged Operators

Deployments Covered:

  • Cloud-Based
  • On-Premise

Applications Covered:

  • Customer Analytics
  • Network Traffic Optimization
  • Fault Diagnostics & Predictive Maintenance
  • Fraud Detection & Security
  • Virtual Assistance & Chatbots

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Telecom AI and Analytics Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Services

6 Global Telecom AI and Analytics Market, By Enterprise Size

  • 6.1 Introduction
  • 6.2 Small & Medium Enterprises (SMEs)
  • 6.3 Large Enterprises

7 Global Telecom AI and Analytics Market, By Operator Type

  • 7.1 Introduction
  • 7.2 Mobile-Only Operators
  • 7.3 Fixed-Line-Only Operators
  • 7.4 Converged Operators

8 Global Telecom AI and Analytics Market, By Deployment

  • 8.1 Introduction
  • 8.2 Cloud-Based
  • 8.3 On-Premise

9 Global Telecom AI and Analytics Market, By Application

  • 9.1 Introduction
  • 9.2 Customer Analytics
  • 9.3 Network Traffic Optimization
  • 9.4 Fault Diagnostics & Predictive Maintenance
  • 9.5 Fraud Detection & Security
  • 9.6 Virtual Assistance & Chatbots

10 Global Telecom AI and Analytics Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM Corporation
  • 12.2 Microsoft Corporation
  • 12.3 Intel Corporation
  • 12.4 AT&T
  • 12.5 Cisco Systems
  • 12.6 Nuance Communications
  • 12.7 Salesforce
  • 12.8 Nvidia
  • 12.9 Amazon Web Services (AWS)
  • 12.10 Nokia
  • 12.11 Huawei Technologies Co. Ltd
  • 12.12 Amdocs Inc.
  • 12.13 Vodafone Ltd.
  • 12.14 SK Telecom
  • 12.15 American Tower Corporation

List of Tables

  • Table 1 Global Telecom AI and Analytics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Telecom AI and Analytics Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Telecom AI and Analytics Market Outlook, By Software (2024-2032) ($MN)
  • Table 4 Global Telecom AI and Analytics Market Outlook, By Services (2024-2032) ($MN)
  • Table 5 Global Telecom AI and Analytics Market Outlook, By Enterprise Size (2024-2032) ($MN)
  • Table 6 Global Telecom AI and Analytics Market Outlook, By Small & Medium Enterprises (SMEs) (2024-2032) ($MN)
  • Table 7 Global Telecom AI and Analytics Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 8 Global Telecom AI and Analytics Market Outlook, By Operator Type (2024-2032) ($MN)
  • Table 9 Global Telecom AI and Analytics Market Outlook, By Mobile-Only Operators (2024-2032) ($MN)
  • Table 10 Global Telecom AI and Analytics Market Outlook, By Fixed-Line-Only Operators (2024-2032) ($MN)
  • Table 11 Global Telecom AI and Analytics Market Outlook, By Converged Operators (2024-2032) ($MN)
  • Table 12 Global Telecom AI and Analytics Market Outlook, By Deployment (2024-2032) ($MN)
  • Table 13 Global Telecom AI and Analytics Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 14 Global Telecom AI and Analytics Market Outlook, By On-Premise (2024-2032) ($MN)
  • Table 15 Global Telecom AI and Analytics Market Outlook, By Application (2024-2032) ($MN)
  • Table 16 Global Telecom AI and Analytics Market Outlook, By Customer Analytics (2024-2032) ($MN)
  • Table 17 Global Telecom AI and Analytics Market Outlook, By Network Traffic Optimization (2024-2032) ($MN)
  • Table 18 Global Telecom AI and Analytics Market Outlook, By Fault Diagnostics & Predictive Maintenance (2024-2032) ($MN)
  • Table 19 Global Telecom AI and Analytics Market Outlook, By Fraud Detection & Security (2024-2032) ($MN)
  • Table 20 Global Telecom AI and Analytics Market Outlook, By Virtual Assistance & Chatbots (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.