封面
市場調查報告書
商品編碼
1889207

全球晶片器官市場:預測至2032年-按器官類型、產品、技術、應用、最終用戶和地區進行分析

Organs-On-Chips Market Forecasts to 2032 - Global Analysis By Organ Type, Offering, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球器官晶片市場價值將達到 9,921 萬美元,到 2032 年將達到 5.3455 億美元,在預測期內的複合年成長率為 27.2%。

器官晶片是一種基於細胞的微觀平台,旨在模擬人體器官的功能。它們由微流體網路和人類細胞建構而成,能夠重現循環、機械運動和組織間相互作用等活動。與傳統的實驗室技術相比,這些晶片為檢驗疾病機制、評估藥物和理解人體生物學提供了一個更接近真實情況的環境,是動物實驗的先進替代方案。

研究表明,在美國,每 1000 種潛在藥物中只有 1 種能夠透過臨床前試驗進入臨床試驗,而 90% 的藥物在臨床試驗中失敗,主要原因是缺乏療效或意外的毒性。

對個人化醫療的需求

這些平台使研究人員能夠複製患者獨特的病理,從而實現個人化藥物測試和治療方法的開發。與傳統模型不同,晶片器官系統可以模擬個體間的遺傳和生理差異,提高治療結果預測的準確性。微流體和生物材料的進步正在提升這些設備的精確度。隨著精準醫療在全球的普及,製藥公司正在加速採用晶片器官解決方案,以減少藥物研發過程中的試驗。預計這一趨勢將加速晶片器官技術在已開發醫療市場和新興醫療市場的應用。

缺乏標準化和可重複性

設計、製造方法和生物原料的差異常常導致不同實驗室間結果不一致。監管機構要求提供檢驗且可重複的數據,這阻礙了技術的廣泛應用。缺乏普遍接受的通訊協定也使科學研究與產業合作變得複雜。高變異性也引發了人們對商業應用擴充性的擔憂。在統一標準建立之前,技術的應用可能仍將局限於專業研究領域。

多重器官晶片系統的開發

透過整合多個器官模型並模擬複雜的生理交互作用,該系統能夠更全面地展現藥物作用。此類創新可望徹底革新毒理學研究、疾病建模和個人化治療策略。微工程和幹細胞生物學領域的新興技術正推動更精細的設計。學術機構、生技公司和製藥公司之間的合作計劃正在加速研發進程。隨著對綜合性臨床前模型的需求不斷成長,多器官晶片系統有望成為先進生物醫學研究的基石。

來自其他更先進型號的競爭

晶片器官技術面臨其他先進模型的競爭,例如3D生物列印和類器官。這些替代技術也能為藥物測試和疾病研究提供與生理相關的環境。這些領域的成熟企業受益於雄厚的資金籌措和不斷成長的應用市場。結合類器官和生物列印的混合方法進一步加劇了競爭壓力。如果晶片器官開發商在成本效益和擴充性方面缺乏明顯的差異化優勢,他們可能難以獲得市場佔有率。多種顛覆性技術的存在凸顯了策略定位和創新的重要性。

新冠疫情的影響:

新冠疫情擾亂了供應鏈,延緩了非必要的實驗室研究,並影響了器官晶片的研發進度。然而,這場危機也凸顯了快速可靠的臨床前模型的重要性。器官晶片系統因其能夠在受控環境中模擬病毒感染並測試潛在療法而備受關注。監管機構加快了創新生物醫學工具的核准流程,以協助應對疫情。疫情後的策略強調了器官晶片生態系中韌性、數位整合和分散式研究模式的重要性。

在預測期內,晶片肺細分市場將佔據最大的市場佔有率。

預計在預測期內,肺晶片將佔據最大的市場佔有率,因為其能夠模擬呼吸功能,使其在研究肺部疾病和藥物反應方面極為有用。氣喘、慢性阻塞性肺病和感染性呼吸系統疾病的日益普遍正在推動對這類模型的需求。製藥公司擴大使用肺部晶片系統來評估吸入療法和疫苗。微流體設計的進步正在提高模擬氣血屏障相互作用的精確度。

在預測期內,個人化醫療領域將實現最高的複合年成長率。

預計在預測期內,個人化醫療領域將實現最高成長率,因為它能夠進行針對特定患者的藥物測試,並降低通用治療方法的風險。對精準醫療舉措的持續投入正在加速其應用。將患者來源的細胞整合到晶片器官系統中可以提高預測準確性。醫療服務提供者正日益認知到個人化治療策略的價值。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率,強大的研究基礎設施和先進的生物技術能力將推動該技術的廣泛應用。在政府和私人資金的大力支持下,美國和加拿大在器官晶片創新領域處於領先地位。該地區的法規結構對新型生物醫學技術的發展十分有利。大學、Start-Ups和大型製藥公司之間的合作正在加速商業化進程。

年複合成長率最高的地區:

在預測期內,亞太地區預計將實現最高的複合年成長率,這主要得益於醫療基礎設施的持續改善和生物醫學研究投資的持續成長。中國、日本和印度等國家正積極推動生命科學領域的創新。政府主導的措施和公私合營正在促進技術轉移和普及。精準醫療意識的不斷提高正在推動先進臨床前模型的應用。隨著區域經濟的現代化,亞太地區有望成為器官晶片技術成長最快的市場。

免費客製化服務:

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
  • 分析材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球晶片器官市場(依器官類型分類)

  • 晶片肝臟
  • 晶片上的腫瘤/癌症
  • 晶片肺
  • 晶片上的皮膚
  • 晶片上的心臟
  • 薯片上的腸子
  • 晶片上的腎臟
  • 多重器官/晶片人體
  • 晶片上的大腦
  • 其他類型

6. 全球器官晶片市場(依產品/服務分類)

  • 產品
    • 單一器官晶片
    • 多重器官晶片
    • 輔助設備
  • 消耗品
    • 微流體材料
    • 細胞培養基和試劑
  • 軟體
  • 服務
    • 客製化晶片開發
    • 合約研究和測試服務

7. 全球器官晶片市場(依技術分類)

  • PDMS
  • 3D生物列印
  • 熱塑性塑膠
  • 軟光刻
  • 玻璃
  • 水凝膠
  • 微加工和微流體
  • 感測器整合技術

8. 全球器官晶片市場(依應用分類)

  • 藥物發現與開發
  • 診斷開發
  • 毒理學研究
  • 再生醫學
  • 疾病模型
  • 個人化醫療
  • 其他應用領域

9. 全球器官晶片市場(以最終用戶分類)

  • 製藥和生物技術公司
  • 學術和研究機構
  • 醫院和臨床研究中心
  • CRO(委外研發機構)
  • 診斷檢查室

第10章 全球器官晶片市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章:企業概況

  • Emulate
  • Fluigent
  • MIMETAS
  • Organovo
  • CN Bio Innovations
  • SynVivo
  • TissUse
  • Kirkstall Ltd
  • Hesperos
  • AxoSim Technologies
  • InSphero
  • Nortis
  • AlveoliX
  • AIM Biotech
  • BiomimX
Product Code: SMRC32667

According to Stratistics MRC, the Global Organs-On-Chips Market is accounted for $99.21 million in 2025 and is expected to reach $534.55 million by 2032 growing at a CAGR of 27.2% during the forecast period. Organs-on-chips are miniature, cell-based platforms designed to simulate how human organs work. Built with microfluidic networks and human cells, they recreate activities like circulation, mechanical movement, and tissue interactions. These chips provide a realistic environment to examine illness mechanisms, evaluate medications, and understand human biology with greater precision than conventional lab techniques, serving as an advanced substitute for animal studies.

According to research, in the US, only 1 out of 1,000 potential drugs progresses to clinical trials post preclinical testing. Of these, 90% of the drugs fail during clinical trials, primarily due to the lack of efficacy or unforeseen toxicity.

Market Dynamics:

Driver:

Demand for personalized medicine

The platforms allow researchers to replicate patient-specific conditions, enabling tailored drug testing and therapeutic development. Unlike conventional models, organ-on-chip systems can mimic unique genetic and physiological variations, improving accuracy in predicting treatment outcomes. Advances in microfluidics and biomaterials are enhancing the precision of these devices. As precision medicine gains traction globally, pharmaceutical companies are increasingly adopting organ-on-chip solutions to reduce trial-and-error in drug discovery. This trend is expected to accelerate adoption across both developed and emerging healthcare markets.

Restraint:

Lack of standardization and reproducibility

Variations in design, fabrication methods, and biological inputs often lead to inconsistent results across laboratories. Regulatory agencies require validated and repeatable data, which slows down widespread acceptance. The absence of universally accepted protocols complicates collaboration between research institutions and industry players. High variability also raises concerns about scalability for commercial applications. Until harmonized standards are established, adoption may remain limited to specialized research environments.

Opportunity:

Development of multi-organ-on-chip systems

The systems integrate multiple organ models to simulate complex physiological interactions, offering a more holistic view of drug effects. Such innovations can revolutionize toxicology studies, disease modeling, and personalized treatment strategies. Emerging technologies in microengineering and stem cell biology are enabling more sophisticated designs. Collaborative projects between academia, biotech firms, and pharmaceutical companies are accelerating development. As demand for comprehensive preclinical models rises, multi-organ-on-chip systems are poised to become a cornerstone of advanced biomedical research.

Threat:

Competition from alternative advanced models

Organ-on-chip technologies face competition from other advanced models such as 3D bioprinting and organoids. These alternatives also provide physiologically relevant environments for drug testing and disease studies. Established players in these fields benefit from strong funding and growing adoption. Hybrid approaches that combine organoids with bioprinting further intensify competitive pressures. Without clear differentiation in cost-effectiveness and scalability, organ-on-chip developers may struggle to secure market share. The presence of multiple disruptive technologies underscores the need for strategic positioning and innovation.

Covid-19 Impact:

The COVID-19 pandemic disrupted supply chains and slowed non-essential laboratory research, impacting organ-on-chip development timelines. However, the crisis highlighted the importance of rapid and reliable preclinical models. Organ-on-chip systems gained attention for their ability to replicate viral infections and test potential therapeutics in controlled environments. Regulatory agencies introduced expedited pathways for innovative biomedical tools to support pandemic response. Post-pandemic strategies now emphasize resilience, digital integration, and distributed research models in the organ-on-chip ecosystem.

The lung-On-Chip segment is expected to be the largest during the forecast period

The lung-On-Chip segment is expected to account for the largest market share during the forecast period, due to its ability to replicate respiratory functions makes it highly relevant for studying pulmonary diseases and drug responses. Rising prevalence of asthma, COPD, and infectious respiratory conditions is driving demand for these models. Pharmaceutical companies are increasingly using lung-on-chip systems to evaluate inhaled therapies and vaccines. Advances in microfluidic design are improving accuracy in mimicking air-blood barrier interactions.

The personalized medicine segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the personalized medicine segment is predicted to witness the highest growth rate, due to these platforms enable patient-specific drug testing; reducing risks associated with generalized treatment approaches. Growing investments in precision medicine initiatives are accelerating adoption. Integration of patient-derived cells into organ-on-chip systems enhances predictive accuracy. Healthcare providers are increasingly recognizing the value of individualized therapeutic strategies.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, due to strong research infrastructure and advanced biotechnology capabilities support widespread adoption. The U.S. and Canada are leading in organ-on-chip innovations, backed by significant government and private funding. Regulatory frameworks in the region are supportive of novel biomedical technologies. Collaborations between universities, startups, and pharmaceutical giants are accelerating commercialization.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to expanding healthcare infrastructure and rising investments in biomedical research. Countries such as China, Japan, and India are actively promoting innovation in life sciences. Government initiatives and public-private partnerships are fostering technology transfer and accessibility. Growing awareness of precision medicine is encouraging adoption of advanced preclinical models. As regional economies modernize, Asia Pacific is expected to emerge as the fastest-growing market for organ-on-chip technologies.

Key players in the market

Some of the key players in Organs-On-Chips Market include Emulate, Fluigent, MIMETAS, Organovo, CN Bio Inn, SynVivo, TissUse, Kirkstall Li, Hesperos, AxoSim Te, InSphero, Nortis, Alveolix, AIM Biote, and Biomimx.

Key Developments:

In June 2025, Emulate has launched the AVA Emulation System, a self-contained instrument that cultures, incubates, and images up to 96 independent organ-chip samples in a single run. The company says that AVA delivers an unprecedented magnitude of in vivo-level insights faster than animal models while cutting consumable costs four-fold and in-lab labour by half compared to current generation technologies.

In July 2023, AxoSim, Inc. and Vyant Bio, Inc. announced that they have entered into a definitive agreement under which AxoSim will acquire the microBrain(TM)-associated assets of Vyant Bio's StemoniX subsidiary. The all-cash transaction is expected to close in the next several months, subject to approval by Vyant Bio's shareholders. The companies also announced that effective immediately, AxoSim will have exclusive and sole distribution rights to market the StemoniX microBrain technology platform to pharmaceutical and biotechnology customers.

Organ Types Covered:

  • Liver-on-Chip
  • Tumor/Cancer-on-Chip
  • Lung-on-Chip
  • Skin-on-Chip
  • Heart/Cardiac-on-Chip
  • Intestine-on-Chip
  • Kidney-on-Chip
  • Multi-organ / Body-on-Chip
  • Brain-on-Chip
  • Other Types

Offerings Covered:

  • Products
  • Consumables
  • Software
  • Services

Technologies Covered:

  • PDMS
  • 3D Bioprinting
  • Thermoplastics
  • Soft lithography
  • Glass
  • Hydrogels
  • Microfabrication & Microfluidics
  • Sensor Integration Technologies

Applications Covered:

  • Drug Discovery & Development
  • Diagnostic Development
  • Toxicology Studies
  • Regenerative Medicine
  • Disease Modeling
  • Personalized Medicine
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutes
  • Hospitals & Clinical Research Centers
  • Contract Research Organizations (CROs)
  • Diagnostic Laboratories

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Organs-On-Chips Market, By Organ Type

  • 5.1 Introduction
  • 5.2 Liver-on-Chip
  • 5.3 Tumor/Cancer-on-Chip
  • 5.4 Lung-on-Chip
  • 5.5 Skin-on-Chip
  • 5.6 Heart/Cardiac-on-Chip
  • 5.7 Intestine-on-Chip
  • 5.8 Kidney-on-Chip
  • 5.9 Multi-organ / Body-on-Chip
  • 5.10 Brain-on-Chip
  • 5.11 Other Types

6 Global Organs-On-Chips Market, By Offering

  • 6.1 Introduction
  • 6.2 Products
    • 6.2.1 Single-Organ Chips
    • 6.2.2 Multi-Organ Chips
    • 6.2.3 Supporting Instruments
  • 6.3 Consumables
    • 6.3.1 Microfluidic Materials
    • 6.3.2 Cell culture Media & Reagents
  • 6.4 Software
  • 6.5 Services
    • 6.5.1 Custom Chip Development
    • 6.5.2 Contract Research & Testing Services

7 Global Organs-On-Chips Market, By Technology

  • 7.1 Introduction
  • 7.2 PDMS
  • 7.3 3D Bioprinting
  • 7.4 Thermoplastics
  • 7.5 Soft lithography
  • 7.6 Glass
  • 7.7 Hydrogels
  • 7.8 Microfabrication & Microfluidics
  • 7.9 Sensor Integration Technologies

8 Global Organs-On-Chips Market, By Application

  • 8.1 Introduction
  • 8.2 Drug Discovery & Development
  • 8.3 Diagnostic Development
  • 8.4 Toxicology Studies
  • 8.5 Regenerative Medicine
  • 8.6 Disease Modeling
  • 8.7 Personalized Medicine
  • 8.8 Other Applications

9 Global Organs-On-Chips Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutes
  • 9.4 Hospitals & Clinical Research Centers
  • 9.5 Contract Research Organizations (CROs)
  • 9.6 Diagnostic Laboratories

10 Global Organs-On-Chips Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Emulate
  • 12.2 Fluigent
  • 12.3 MIMETAS
  • 12.4 Organovo
  • 12.5 CN Bio Innovations
  • 12.6 SynVivo
  • 12.7 TissUse
  • 12.8 Kirkstall Ltd
  • 12.9 Hesperos
  • 12.10 AxoSim Technologies
  • 12.11 InSphero
  • 12.12 Nortis
  • 12.13 AlveoliX
  • 12.14 AIM Biotech
  • 12.15 BiomimX

List of Tables

  • Table 1 Global Organs-On-Chips Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Organs-On-Chips Market Outlook, By Organ Type (2024-2032) ($MN)
  • Table 3 Global Organs-On-Chips Market Outlook, By Liver-on-Chip (2024-2032) ($MN)
  • Table 4 Global Organs-On-Chips Market Outlook, By Tumor/Cancer-on-Chip (2024-2032) ($MN)
  • Table 5 Global Organs-On-Chips Market Outlook, By Lung-on-Chip (2024-2032) ($MN)
  • Table 6 Global Organs-On-Chips Market Outlook, By Skin-on-Chip (2024-2032) ($MN)
  • Table 7 Global Organs-On-Chips Market Outlook, By Heart/Cardiac-on-Chip (2024-2032) ($MN)
  • Table 8 Global Organs-On-Chips Market Outlook, By Intestine-on-Chip (2024-2032) ($MN)
  • Table 9 Global Organs-On-Chips Market Outlook, By Kidney-on-Chip (2024-2032) ($MN)
  • Table 10 Global Organs-On-Chips Market Outlook, By Multi-organ / Body-on-Chip (2024-2032) ($MN)
  • Table 11 Global Organs-On-Chips Market Outlook, By Brain-on-Chip (2024-2032) ($MN)
  • Table 12 Global Organs-On-Chips Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 13 Global Organs-On-Chips Market Outlook, By Offering (2024-2032) ($MN)
  • Table 14 Global Organs-On-Chips Market Outlook, By Products (2024-2032) ($MN)
  • Table 15 Global Organs-On-Chips Market Outlook, By Single-Organ Chips (2024-2032) ($MN)
  • Table 16 Global Organs-On-Chips Market Outlook, By Multi-Organ Chips (2024-2032) ($MN)
  • Table 17 Global Organs-On-Chips Market Outlook, By Supporting Instruments (2024-2032) ($MN)
  • Table 18 Global Organs-On-Chips Market Outlook, By Consumables (2024-2032) ($MN)
  • Table 19 Global Organs-On-Chips Market Outlook, By Microfluidic Materials (2024-2032) ($MN)
  • Table 20 Global Organs-On-Chips Market Outlook, By Cell culture Media & Reagents (2024-2032) ($MN)
  • Table 21 Global Organs-On-Chips Market Outlook, By Software (2024-2032) ($MN)
  • Table 22 Global Organs-On-Chips Market Outlook, By Services (2024-2032) ($MN)
  • Table 23 Global Organs-On-Chips Market Outlook, By Custom Chip Development (2024-2032) ($MN)
  • Table 24 Global Organs-On-Chips Market Outlook, By Contract Research & Testing Services (2024-2032) ($MN)
  • Table 25 Global Organs-On-Chips Market Outlook, By Technology (2024-2032) ($MN)
  • Table 26 Global Organs-On-Chips Market Outlook, By PDMS (2024-2032) ($MN)
  • Table 27 Global Organs-On-Chips Market Outlook, By 3D Bioprinting (2024-2032) ($MN)
  • Table 28 Global Organs-On-Chips Market Outlook, By Thermoplastics (2024-2032) ($MN)
  • Table 29 Global Organs-On-Chips Market Outlook, By Soft lithography (2024-2032) ($MN)
  • Table 30 Global Organs-On-Chips Market Outlook, By Glass (2024-2032) ($MN)
  • Table 31 Global Organs-On-Chips Market Outlook, By Hydrogels (2024-2032) ($MN)
  • Table 32 Global Organs-On-Chips Market Outlook, By Microfabrication & Microfluidics (2024-2032) ($MN)
  • Table 33 Global Organs-On-Chips Market Outlook, By Sensor Integration Technologies (2024-2032) ($MN)
  • Table 34 Global Organs-On-Chips Market Outlook, By Application (2024-2032) ($MN)
  • Table 35 Global Organs-On-Chips Market Outlook, By Drug Discovery & Development (2024-2032) ($MN)
  • Table 36 Global Organs-On-Chips Market Outlook, By Diagnostic Development (2024-2032) ($MN)
  • Table 37 Global Organs-On-Chips Market Outlook, By Toxicology Studies (2024-2032) ($MN)
  • Table 38 Global Organs-On-Chips Market Outlook, By Regenerative Medicine (2024-2032) ($MN)
  • Table 39 Global Organs-On-Chips Market Outlook, By Disease Modeling (2024-2032) ($MN)
  • Table 40 Global Organs-On-Chips Market Outlook, By Personalized Medicine (2024-2032) ($MN)
  • Table 41 Global Organs-On-Chips Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 42 Global Organs-On-Chips Market Outlook, By End User (2024-2032) ($MN)
  • Table 43 Global Organs-On-Chips Market Outlook, By Pharmaceutical & Biotechnology Companies (2024-2032) ($MN)
  • Table 44 Global Organs-On-Chips Market Outlook, By Academic & Research Institutes (2024-2032) ($MN)
  • Table 45 Global Organs-On-Chips Market Outlook, By Hospitals & Clinical Research Centers (2024-2032) ($MN)
  • Table 46 Global Organs-On-Chips Market Outlook, By Contract Research Organizations (CROs) (2024-2032) ($MN)
  • Table 47 Global Organs-On-Chips Market Outlook, By Diagnostic Laboratories (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.