封面
市場調查報告書
商品編碼
1880387

高超音速飛行器熱電蒙皮市場預測至2032年:按材料類型、功能、技術、應用、最終用戶和地區分類的全球分析

Thermo-Electric Skin for Hypersonics Market Forecasts to 2032 - Global Analysis By Material Type, Functionality, Technology, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計 2025 年全球高超音速飛行器熱電蒙皮市場價值將達到 68 億美元,到 2032 年將達到 88 億美元,預測期內複合年成長率為 3.7%。

用於高超音速飛行器的熱電蒙皮是一種工程化的表面層,它整合了熱電材料,用於收集高超音速飛行過程中產生的極端熱量並將其直接轉化為電能。這項技術利用飛行器冷熱區域之間的溫度梯度來驅動席貝克效應,從而輔助主動溫度控管和發電。

據美國航太學會 (AIAA) 稱,安裝在飛機表面的先進熱電發電機可以捕獲高超音速飛行過程中產生的巨大摩擦熱,並將其用於航空電子系統的自供電和溫度控管。

對即時熱通量管理的需求日益成長

高超音速平台在超過5馬赫的速度下面臨極端氣動加熱,對即時熱流管理的需求日益成長,加速了對熱電蒙皮系統的需求。全球國防項目都在優先考慮能夠穩定表面溫度、保護結構完整性並延長任務續航時間的自適應散熱技術。向可重複使用高超音速飛行器的過渡進一步凸顯了對能夠動態調節熱負荷的智慧熱介面的需求。隨著熱不確定性成為任務關鍵挑戰,熱電蒙皮解決方案在先進航太計劃中正變得日益重要。

複雜地整合到下一代高超音速飛行器中

將熱電材料複雜地整合到下一代高超音速飛行器機身中是一個主要的阻礙因素。熱電蒙皮必須與超高溫陶瓷、碳基複合複合材料和嵌入式感測器網路無縫融合。實現結構相容性、保持氣動性能平滑性以及確保可靠的熱電耦合都帶來了巨大的設計挑戰。對精確微層製造和高穩定性電源佈線的需求進一步增加了實施的複雜性。儘管熱電材料具有諸多優勢,但系統級相容性和鑑定測試仍然需要耗費大量資源,這減緩了那些對熱性能、機械性能和電磁性能要求嚴格的項目的採用過程。

高熵合金基熱電材料的出現

高熵合金基熱電材料的出現帶來了巨大的發展機遇,其席貝克係數更高、熱穩定性更強、高溫性能顯著優於傳統的碲化鉍體系。這些新一代合金即使在極端高超音速條件下也能高效回收廢熱,從而提高機載能源利用率並降低冷卻系統品質。國防研究機構、材料研究機構和主要航太製造商不斷增加研發投入,加速原型材料的開發。能夠承受數千攝氏度高溫的高熵合金,為多功能熱電蒙皮的研發開闢了新的可能性。

稀有熱電化合物供應鏈中的脆弱性

稀有熱電化合物的供應鏈脆弱性構成威脅,尤其是對於高性能熱電模組中使用的碲、鉿和某些重金屬摻雜劑等元素而言。有限的採礦能力、地域集中的蘊藏量以及地緣政治緊張局勢加劇了材料採購風險。需要長期穩定供應的航太計畫可能面臨難以取得穩定、高純度熱電原料的不確定性。價格波動和出口限制將進一步阻礙大規模生產,使得供應鏈韌性成為影響先進熱電蒙皮技術部署時間表的關鍵因素。

新冠疫情的感染疾病:

新冠疫情暫時延緩了高超音速飛行器的研發進程,原因是材料測試、風洞測試和零件鑑定週期都有所延誤。然而,感染疾病也提升了國家安全資金的優先地位,並在限制措施放鬆後加速了對下一代溫度控管系統和高速飛行系統的投資。供應鏈中斷凸顯了熱電材料製造區域化和建立強大的國內生產線的必要性。疫情後的復甦計畫重新激活了航太原始設備製造商、國防研究實驗室和材料技術創新者之間的合作,加速了熱電蒙皮技術的發展。

預計在預測期內,超高溫陶瓷細分市場將佔據最大的市場佔有率。

預計在預測期內,超高溫陶瓷領域將佔據最大的市場佔有率,因為它在承受高超音速飛行中高達數千度的熱負荷方面發揮著至關重要的作用。這些陶瓷提供結構保護、抗氧化性和熱穩定性,使熱電蒙皮即使在嚴苛的加熱環境下也能有效運作。它們在滑翔機、巡航系統和可重複使用驗證機中的日益普及,進一步鞏固了該領域的領先地位。對陶瓷基質複合材料、先進燒結技術和航太級塗層技術的投資不斷增加,將在整個預測期內進一步鞏固該領域的主導地位。

預計在預測期內,自冷式熱電模組細分市場將呈現最高的複合年成長率。

在預測期內,自冷式熱電模組細分市場預計將保持最高的成長率,這主要得益於高超音速飛行過程中對能夠自主散熱的表面日益成長的需求。這些模組能夠將熱梯度轉化為冷卻效應,從而減少對笨重流體冷卻系統的依賴,並實現更輕、更節能的機身結構。高溫熱電材料、奈米工程介面和整合電源佈線網路的進步正在加速其應用。國防領域對自適應熱設計的投入不斷增加,也進一步推動了這項性能關鍵型模組的快速發展。

佔比最大的地區:

由於中國、印度、日本和韓國高超音速飛行器研發項目的不斷擴展,預計亞太地區將在預測期內佔據最大的市場佔有率。大量的政府資金投入、材料研發的快速發展以及強大的航太製造生態系統,都為先進溫度控管技術的大規模應用提供了支持。區域實驗室正在加速高溫熱電材料和多功能氣動蒙皮的創新。對戰略阻礙力需求的不斷成長進一步推動了投資,鞏固了亞太地區作為高超音速熱技術領先中心的地位。

年複合成長率最高的地區:

在預測期內,北美預計將實現最高的複合年成長率,這主要得益於美國高超音速計劃的擴張、強勁的國防預算週期以及高溫熱電材料的快速商業化。國家實驗室、航太巨頭和先進材料公司正在加速原型開發和全尺寸整合測試。強大的產業基礎、穩健的供應鏈合作以及對熱防護研究的策略性投資正在推動相關技術的快速應用。北美對可重複使用高超音速平台和自主熱結構的重視進一步鞏固了其高速成長的勢頭。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算、預測和複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球高超音速飛行器熱電蒙皮市場(依材料類型分類)

  • 介紹
  • 超高溫陶瓷
  • 石墨烯和2D熱電薄膜
  • 碳碳複合材料
  • 氣凝膠整合層壓板
  • 形狀自適應智慧合金
  • 軟性聚合物導電片

6. 全球高超音速飛行器熱電蒙皮市場(依功能分類)

  • 介紹
  • 散熱層
  • 自冷式熱電模組
  • 主動溫度控管網路
  • 結構加固層
  • 降低飛機特徵
  • 嵌入式感應器皮膚

7. 全球高超音速飛行器熱電蒙皮市場(依技術分類)

  • 介紹
  • 薄膜熱電沉積
  • 自適應溫度映射系統
  • 高溫微型冷卻模組
  • 人工智慧驅動的熱預測系統
  • 奈米層熱通道
  • 即時溫度診斷

8. 全球高超音速飛行器熱電蒙皮市場(依應用領域分類)

  • 介紹
  • 飛彈彈體
  • 高超音速飛機
  • 再入飛行器
  • 滑翔機系統
  • 太空梭
  • 高速測試平台

9. 全球高超音速飛行器熱電蒙皮市場(依最終用戶分類)

  • 介紹
  • 國防軍
  • 航太原始設備製造商
  • 研究所
  • 材料科學公司
  • 高超音速測試設施
  • 政府研究機構

第10章 全球高超音速飛行器熱電蒙皮市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章:企業概況

  • Ferrotec Holdings
  • II-VI Incorporated
  • Kyocera
  • Tellurex
  • Laird Thermal Systems
  • Hi-Z Technology
  • Global Power Technologies
  • Bosch
  • Heraeus
  • Honeywell
  • Komatsu
  • ThermoElectric Power Corporation
  • Raytheon Technologies
  • BAE Systems
  • Rolls-Royce
  • Applied Materials
  • Corning
Product Code: SMRC32467

According to Stratistics MRC, the Global Thermo-electric Skin for Hypersonics Market is accounted for $6.8 billion in 2025 and is expected to reach $8.8 billion by 2032 growing at a CAGR of 3.7% during the forecast period. A thermo-electric skin for hypersonic vehicles is an engineered surface layer that integrates thermoelectric materials to harvest the extreme heat generated during hypersonic flight and convert it directly into electrical energy. This technology supports active thermal management and power generation, utilizing the heat gradient between hot and cool sections of the vehicle to drive the Seebeck effect.

According to the American Institute of Aeronautics and Astronautics, advanced thermo-electric generators on vehicle skins can harvest immense frictional heat during hypersonic flight for self-powering avionics and thermal management.

Market Dynamics:

Driver:

Growing need for real-time thermal flux management

Growing need for real-time thermal flux management is accelerating demand for thermo-electric skin systems as hypersonic platforms encounter extreme aerodynamic heating at Mach 5+. Defense programs globally are prioritizing adaptive heat-dissipation technologies capable of stabilizing surface temperatures, protecting structural integrity, and enabling longer mission endurance. The shift toward reusable hypersonic aircraft further amplifies the requirement for smart thermal interfaces that can modulate heat loads dynamically. As thermal uncertainty becomes a mission-critical challenge, thermo-electric skin solutions gain strategic relevance across advanced aerospace initiatives.

Restraint:

Complex integration into next-gen hypersonic airframes

Complex integration into next-generation hypersonic airframes presents a key restraint, as thermo-electric skins must seamlessly harmonize with ultra-high-temperature ceramics, carbon-carbon composites, and embedded sensor networks. Achieving structural conformity, maintaining aerodynamic smoothness, and ensuring reliable thermal-electrical coupling increases engineering difficulty. The need for precision micro-layer fabrication and high-stability power routing further complicates adoption. Despite their benefits, system-level compatibility and qualification testing remain resource-intensive, creating slower adoption curves for programs with strict thermal, mechanical, and electromagnetic performance thresholds.

Opportunity:

Emergence of high-entropy alloy-based TE materials

The emergence of high-entropy alloy-based thermoelectric materials presents a strong opportunity by enabling superior Seebeck coefficients, enhanced thermal stability, and high-temperature performance well above conventional bismuth-telluride systems. These next-generation alloys can efficiently harvest waste heat under extreme hypersonic conditions, improving onboard energy availability and reducing cooling-system mass. Increased R&D investments by defense laboratories, materials institutes, and aerospace primes are accelerating prototype development. As high-entropy alloys demonstrate durability at multi-thousand-degree heat loads, they unlock new possibilities for multifunctional thermo-electric skins.

Threat:

Supply chain fragility of rare thermoelectric compounds

Supply chain fragility of rare thermoelectric compounds poses a threat, particularly for elements like tellurium, hafnium, and certain heavy-metal dopants used in high-performance TE modules. Limited mining capacity, geographically concentrated reserves, and geopolitical tensions amplify material-access risks. Aerospace programs requiring long-term procurement stability may face uncertainty in securing consistent, high-purity thermoelectric feedstocks. Price volatility and export restrictions further challenge scaling efforts, making supply-chain resilience a critical factor that could influence deployment timelines for advanced TE skin technologies.

Covid-19 Impact:

Covid-19 caused temporary setbacks in hypersonic R&D timelines due to delays in materials testing, wind-tunnel campaigns, and component qualification cycles. However, the pandemic strengthened national-security funding priorities, accelerating investment in next-generation thermal management and high-speed flight systems once restrictions eased. Supply-chain disruptions highlighted the need for localizing TE material manufacturing and building robust domestic production lines. Post-pandemic recovery programs facilitated renewed collaboration between aerospace OEMs, defense laboratories, and materials innovators, supporting faster development trajectories for thermo-electric skin technologies.

The ultra-high-temperature ceramics segment is expected to be the largest during the forecast period

The ultra-high-temperature ceramics segment is expected to account for the largest market share during the forecast period, resulting from their essential role in withstanding multi-thousand-degree thermal loads during hypersonic flight. These ceramics provide structural protection, oxidation resistance, and thermal stability, enabling thermo-electric skins to function effectively under severe heating. Growing adoption across glide vehicles, cruise systems, and reusable demonstrators reinforces segment dominance. Increased investment in ceramic matrix composites, advanced sintering techniques, and aerospace-grade coating technologies further strengthens this segment's leadership throughout the forecast period.

The self-cooling thermo-electric modules segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the self-cooling thermo-electric modules segment is predicted to witness the highest growth rate, propelled by rising demand for surfaces that autonomously dissipate heat during hypersonic operation. These modules convert temperature gradients into cooling effects, reducing reliance on bulky fluid-based systems and enabling lighter, more energy-efficient airframes. Advancements in high-temperature TE materials, nano-engineered interfaces, and integrated power-routing networks accelerate adoption. Increased defense investment in adaptive thermal architectures further drives rapid expansion of this performance-critical module class.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to expanding hypersonic development programs in China, India, Japan, and South Korea. Significant government funding, rapid materials R&D growth, and strong aerospace-manufacturing ecosystems support large-scale deployment of advanced thermal-management technologies. Regional institutes are accelerating innovation in high-temperature TE materials and multifunctional aerodynamic skins. Rising demand for strategic deterrence capabilities further propels investment, solidifying Asia Pacific as a dominant center for hypersonic thermal technologies.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with expanding U.S. hypersonic programs, strong defense funding cycles, and rapid commercialization of high-temperature thermoelectric materials. National laboratories, aerospace primes, and advanced-materials firms are accelerating prototype development and full-scale integration trials. Strong industrial infrastructure, robust supply-chain partnerships, and strategic investments in thermal-protection research fuel rapid adoption. The region's emphasis on reusable hypersonic platforms and autonomous thermal architectures further reinforces North America's high growth trajectory.

Key players in the market

Some of the key players in Thermo-electric Skin for Hypersonics Market include Ferrotec Holdings, II-VI Incorporated, Kyocera, Tellurex, Laird Thermal Systems, Hi-Z Technology, Global Power Technologies, Bosch, Heraeus, Honeywell, Komatsu, ThermoElectric Power Corporation, Raytheon Technologies, BAE Systems, Rolls-Royce, Applied Materials, and Corning.

Key Developments:

In October 2025, Raytheon Technologies unveiled its new "Black Diamond" TEG Skin, a lightweight, high-temperature thermoelectric generator designed to be integrated directly onto the airframe of hypersonic vehicles to power onboard systems from extreme skin friction heat.

In September 2025, BAE Systems launched the HotSkin-X1 module, a next-generation thermoelectric skin system that provides simultaneous power generation and active thermal management for critical avionics bays on high-Mach platforms.

In August 2025, Rolls-Royce announced a breakthrough with its "Thermal Harvestor" coating, a ceramic-based thermoelectric skin applied to engine nacelles and intake surfaces, designed to convert scramjet waste heat into supplemental power for propulsion systems.

Material Types Covered:

  • Ultra-High-Temperature Ceramics
  • Graphene & 2D Thermoelectric Films
  • Carbon-Carbon Composites
  • Aerogel-Integrated Laminates
  • Shape-Adaptive Smart Alloys
  • Flexible Polymeric Conductive Sheets

Functionalities Covered:

  • Heat Dissipation Layers
  • Self-Cooling Thermo-Electric Modules
  • Active Thermal Management Networks
  • Structural Reinforcement Layers
  • Airframe Signature Reduction
  • Embedded Sensor Skin

Technologies Covered:

  • Thin-Film Thermoelectric Deposition
  • Adaptive Temperature Mapping Systems
  • High-Temp Micro-Cooling Modules
  • AI-Driven Thermal Prediction Systems
  • Nano-Layered Heat Channeling
  • Real-Time Temperature Diagnostics

Applications Covered:

  • Missile Bodies
  • Hypersonic Aircraft
  • Reentry Vehicles
  • Glider Systems
  • Spaceplanes
  • High-Speed Test Platforms

End Users Covered:

  • Defense Forces
  • Aerospace OEMs
  • Research Agencies
  • Material Science Companies
  • Hypersonic Testing Facilities
  • Government Laboratories

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Thermo-electric Skin for Hypersonics Market, By Material Type

  • 5.1 Introduction
  • 5.2 Ultra-High-Temperature Ceramics
  • 5.3 Graphene & 2D Thermoelectric Films
  • 5.4 Carbon-Carbon Composites
  • 5.5 Aerogel-Integrated Laminates
  • 5.6 Shape-Adaptive Smart Alloys
  • 5.7 Flexible Polymeric Conductive Sheets

6 Global Thermo-electric Skin for Hypersonics Market, By Functionality

  • 6.1 Introduction
  • 6.2 Heat Dissipation Layers
  • 6.3 Self-Cooling Thermo-Electric Modules
  • 6.4 Active Thermal Management Networks
  • 6.5 Structural Reinforcement Layers
  • 6.6 Airframe Signature Reduction
  • 6.7 Embedded Sensor Skin

7 Global Thermo-electric Skin for Hypersonics Market, By Technology

  • 7.1 Introduction
  • 7.2 Thin-Film Thermoelectric Deposition
  • 7.3 Adaptive Temperature Mapping Systems
  • 7.4 High-Temp Micro-Cooling Modules
  • 7.5 AI-Driven Thermal Prediction Systems
  • 7.6 Nano-Layered Heat Channeling
  • 7.7 Real-Time Temperature Diagnostics

8 Global Thermo-electric Skin for Hypersonics Market, By Application

  • 8.1 Introduction
  • 8.2 Missile Bodies
  • 8.3 Hypersonic Aircraft
  • 8.4 Reentry Vehicles
  • 8.5 Glider Systems
  • 8.6 Spaceplanes
  • 8.7 High-Speed Test Platforms

9 Global Thermo-Electric Skin for Hypersonics Market, By End User

  • 9.1 Introduction
  • 9.2 Defense Forces
  • 9.3 Aerospace OEMs
  • 9.4 Research Agencies
  • 9.5 Material Science Companies
  • 9.6 Hypersonic Testing Facilities
  • 9.7 Government Laboratories

10 Global Thermo-Electric Skin for Hypersonics Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Ferrotec Holdings
  • 12.2 II-VI Incorporated
  • 12.3 Kyocera
  • 12.4 Tellurex
  • 12.5 Laird Thermal Systems
  • 12.6 Hi-Z Technology
  • 12.7 Global Power Technologies
  • 12.8 Bosch
  • 12.9 Heraeus
  • 12.10 Honeywell
  • 12.11 Komatsu
  • 12.12 ThermoElectric Power Corporation
  • 12.13 Raytheon Technologies
  • 12.14 BAE Systems
  • 12.15 Rolls-Royce
  • 12.16 Applied Materials
  • 12.17 Corning

List of Tables

  • Table 1 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Ultra-High-Temperature Ceramics (2024-2032) ($MN)
  • Table 4 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Graphene & 2D Thermoelectric Films (2024-2032) ($MN)
  • Table 5 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Carbon-Carbon Composites (2024-2032) ($MN)
  • Table 6 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Aerogel-Integrated Laminates (2024-2032) ($MN)
  • Table 7 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Shape-Adaptive Smart Alloys (2024-2032) ($MN)
  • Table 8 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Flexible Polymeric Conductive Sheets (2024-2032) ($MN)
  • Table 9 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Functionality (2024-2032) ($MN)
  • Table 10 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Heat Dissipation Layers (2024-2032) ($MN)
  • Table 11 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Self-Cooling Thermo-Electric Modules (2024-2032) ($MN)
  • Table 12 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Active Thermal Management Networks (2024-2032) ($MN)
  • Table 13 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Structural Reinforcement Layers (2024-2032) ($MN)
  • Table 14 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Airframe Signature Reduction (2024-2032) ($MN)
  • Table 15 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Embedded Sensor Skin (2024-2032) ($MN)
  • Table 16 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Technology (2024-2032) ($MN)
  • Table 17 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Thin-Film Thermoelectric Deposition (2024-2032) ($MN)
  • Table 18 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Adaptive Temperature Mapping Systems (2024-2032) ($MN)
  • Table 19 Global Thermo-Electric Skin for Hypersonics Market Outlook, By High-Temp Micro-Cooling Modules (2024-2032) ($MN)
  • Table 20 Global Thermo-Electric Skin for Hypersonics Market Outlook, By AI-Driven Thermal Prediction Systems (2024-2032) ($MN)
  • Table 21 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Nano-Layered Heat Channeling (2024-2032) ($MN)
  • Table 22 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Real-Time Temperature Diagnostics (2024-2032) ($MN)
  • Table 23 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Missile Bodies (2024-2032) ($MN)
  • Table 25 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Hypersonic Aircraft (2024-2032) ($MN)
  • Table 26 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Reentry Vehicles (2024-2032) ($MN)
  • Table 27 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Glider Systems (2024-2032) ($MN)
  • Table 28 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Spaceplanes (2024-2032) ($MN)
  • Table 29 Global Thermo-Electric Skin for Hypersonics Market Outlook, By High-Speed Test Platforms (2024-2032) ($MN)
  • Table 30 Global Thermo-Electric Skin for Hypersonics Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Defense Forces (2024-2032) ($MN)
  • Table 32 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Aerospace OEMs (2024-2032) ($MN)
  • Table 33 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Research Agencies (2024-2032) ($MN)
  • Table 34 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Material Science Companies (2024-2032) ($MN)
  • Table 35 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Hypersonic Testing Facilities (2024-2032) ($MN)
  • Table 36 Global Thermo-Electric Skin for Hypersonics Market Outlook, By Government Laboratories (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.