封面
市場調查報告書
商品編碼
1865482

全球廢棄物發電 (WtE) 市場預測(至 2032 年):按廢棄物類型、技術、應用和區域分類的分析

Waste-to-Energy Conversion Market Forecasts to 2032 - Global Analysis By Waste Type (Municipal Solid Waste, Industrial Waste, Agricultural Waste, Medical Waste, Electronic Waste and Hazardous Waste), Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,全球廢棄物發電 (WtE) 市場預計在 2025 年價值 424 億美元,預計到 2032 年將達到 663.2 億美元,在預測期內以 6.6% 的複合年成長率成長。

廢棄物發電技術利用燃燒、氣化和生物處理等方法,將日常垃圾轉化為可用能源。與掩埋處理不可回收廢棄物不同,專門的工廠能夠生產電力、熱能和生質燃料,從而減少有害排放並限制環境惡化。先進的污染防治系統確保了更清潔的運行,使整個過程更加環保。透過將廢棄物轉化為生產性能源,這種方法符合循環經濟原則,並減少了對傳統化石資源的依賴。隨著全球垃圾量的不斷增加,許多國家正在採用廢棄物發電解決方案,將其視為高效廢棄物管理和可再生能源發電的雙重策略,為實現永續目標做出貢獻。

根據 Anylac Consulting 對 MNRE 數據的摘要,到 2023 年初,印度的 WtE 裝置容量將達到約 300MW,並計劃透過公私合營和市政府主導的舉措進行大幅擴張。

城市垃圾產生量不斷增加

城市擴張、消費活動活性化和人口成長導致固態廢棄物持續成長,給掩埋帶來了巨大壓力。傳統的垃圾處理方法需要佔用大量土地,並造成空氣和土壤污染,引發永續性的挑戰。廢棄物系統透過將混合的不可可再生廢棄物轉化為電力、蒸氣和燃料來解決這些問題,從而減輕掩埋的負擔。許多國家的政府正在投資建造垃圾發電廠,以確保更清潔的城市環境和更好的廢棄物管理。這些發電廠可謂一舉兩得,既能發電又能處理大量廢棄物。隨著全球廢棄物量逐年增加,垃圾發電解決方案的市場也不斷擴大。

需要大量資金投入

興建廢棄物發電廠需要大量資金投入,包括購買精密機械、排放氣體過濾器、土地、廠房建設。與傳統的廢棄物和回收方法相比,垃圾焚化發電技術的安裝和運作成本要高得多。開發中國家往往面臨資金短缺的問題,難以推出大規模計劃。此外,嚴格的監管核准和環境評估也會增加計劃時間和成本,從而阻礙投資者。雖然最終收益來自能源生產和廢棄物費,但投資回報期卻很長。由於高昂的資本成本和漫長的投資回收期,許多政府和私人開發商對建造垃圾焚化發電廠仍然持謹慎態度。

擴大循環經濟舉措

人們對循環經濟原則的日益關注,為廢棄物發電(WtE)領域創造了巨大的發展機會。垃圾掩埋並非將廢棄物掩埋,而是從不可回收的材料中回收可用能源,進而提高資源利用效率。各國政府、市政當局和企業都在採用永續的廢棄物系統,以實現其氣候和環境、社會及治理(ESG)目標,這使得垃圾發電成為一個極具吸引力的選擇。致力於實現碳中和的企業也將垃圾發電視為減少排放、提升營運永續性的有效途徑。隨著越來越多的地區從傳統的垃圾處理方式轉向回收利用,垃圾發電正成為廢棄物管理計畫的核心要素。全球範圍內向回收、再利用和能源回收的轉變,正在創造巨大的市場潛力。

來自回收和堆肥解決方案的競爭

回收、堆肥和零掩埋策略加劇了廢棄物焚化發電廠的競爭。許多政府將資源回收列為更高的環境優先事項,因此傾向將廢棄物送到垃圾分類廠和堆肥廠,而不是垃圾焚化發電系統。回收技術的進步和低成本有機物處理正在減少可用於能源產出的廢棄物量。環保人士也指出,如果廢棄物被焚燒而不是再利用,垃圾焚化發電可能會抑制回收。隨著越來越多的地區推出嚴格的回收強制令,垃圾焚化發電廠可能難以取得足夠的原料,進而影響其效率和獲利能力。這種對回收日益重視的趨勢威脅著垃圾焚化發電的未來發展。

新冠疫情的感染疾病:

新冠疫情為廢棄物(WtE)產業帶來了挑戰和機會。疫情封鎖期間,商業活動減少導致廢棄物產生量下降,影響了工廠運作和原料供應。許多垃圾發電計劃因供應鏈中斷、勞動力短缺和施工限制而延期。同時,生活垃圾和醫療廢棄物的增加凸顯了安全科學處置廢棄物的重要性。各國政府和地方政府尤其將垃圾發電視為安全處置傳染性物質的有效方法。人們對衛生和環境健康的日益關注促使企業投資先進的廢棄物管理技術。隨著限制措施的逐步解除,暫停的計劃陸續復工,有助於市場穩定和未來的成長。

預計在預測期內,都市廢棄物(MSW)細分市場將佔據最大的市場佔有率。

預計在預測期內,都市廢棄物(MSW)領域將佔據最大的市場佔有率。這主要是由於都市區持續大量產生廢棄物。家庭、辦公室、餐廳和公共機構產生的混合廢棄物無法完全回收或安全地填埋掩埋。垃圾焚化發電(WtE)設施旨在處理這些多樣化的廢棄物流,並將其轉化為可用的電力和熱能,為市政當局提供可靠的解決方案。政策制定者正在支持以城市固體廢物為基礎的垃圾焚化發電計劃,以減少對掩埋的依賴並改善城市清潔度。隨著人口成長和城市快速發展,城市固體廢物的數量持續增加,使其成為垃圾焚燒發電的關鍵領域,因為它為能源回收系統提供了穩定且可行的燃料來源。

預計在預測期內,氣化領域將呈現最高的複合年成長率。

預計在預測期內,氣化領域將實現最高成長率。這主要歸功於該技術能夠將固態廢棄物轉化為合成氣,而合成氣比焚燒污染更小。該系統在高溫低氧環境下運作,產生的氣體可用於發電、加熱和生產先進燃料。其靈活性、多樣化的廢棄物能源化能力以及緊湊的工廠設計使其成為城市擴張的理想選擇。各國政府和私人開發商正擴大採用氣化技術,以實現更清潔的營運、更高的效率並最大限度地減少殘灰。隨著對低排放量廢棄物處理解決方案的需求不斷成長,該技術正吸引全球的資金籌措和市場關注。

佔比最大的地區:

由於歐洲擁有高度發展的垃圾處理系統、嚴格的環境法規和積極的掩埋減量政策,預計在預測期內將佔據最大的市場佔有率。丹麥、瑞典、德國和荷蘭等國依賴垃圾發電廠來發電和提供區域供熱,同時處理都市垃圾。該地區的政策著重於回收、排放和資源循環利用,垃圾發電在國家垃圾處理策略中發揮關鍵作用。支持性法規、氣候目標和技術進步不斷推動新電廠的建設。由於都市區的掩埋空間有限,且永續性意識強烈,歐洲優先發展廢棄物能源回收,並維持全球市場最大的佔有率。

預計年複合成長率最高的地區:

由於城市擴張、人口密度增加以及垃圾量激增,預計亞太地區在預測期內將呈現最高的複合年成長率。許多地區掩埋空間不足,促使政府推廣興建垃圾發電廠作為替代處理方法。中國、印度、日本和韓國等國家正在升級其廢棄物系統,並採用氣化和焚化等技術生產綠能。政府獎勵、基礎設施建設資金以及與私人開發商的合作正在推動新設施的建設。在環境政策日益完善和對可再生能源需求不斷成長的推動下,亞太地區在全球廢棄物發電產業中繼續保持最高的成長勢頭。

免費客製化服務:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球廢棄物發電市場(以廢棄物類型分類)

  • 介紹
  • 都市廢棄物(MSW)
  • 工業廢棄物
  • 農業廢棄物
  • 醫療廢棄物
  • 電子廢棄物(電子廢棄物)
  • 危險廢棄物

6. 全球廢棄物發電市場(依技術分類)

  • 介紹
  • 焚化
  • 氣化
  • 熱解
  • 厭氧消化
  • 發酵
  • 等離子弧治療
  • 機械生物療法(MBT)

7. 全球廢棄物發電市場(按應用領域分類)

  • 介紹
  • 發電
  • 發燒
  • 熱電聯產(CHP)
  • 燃料生產

8. 全球廢棄物發電市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第9章:重大發展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第10章:企業概況

  • A2z Group
  • Abellon Clean Energy Ltd
  • Ecogreen Energy Pvt. Ltd
  • Il&fs Environnemental Infrastructure And Services Limited
  • Suez Group
  • Hitachi Zosen Inova
  • Hydroair Techtonics(pcd)Limited
  • Jitf Urban Infrastructure Limited
  • Mailhem Environment Pvt. Ltd
  • Ramky Enviro Engineers Ltd
  • Rollz India Waste Management
  • Veolia Environnement SA
  • Gj Eco Power Pvt. Ltd
  • Covanta Holding Corporation
  • JFE Engineering Corporation
Product Code: SMRC32150

According to Stratistics MRC, the Global Waste-to-Energy Conversion Market is accounted for $42.4 billion in 2025 and is expected to reach $66.32 billion by 2032 growing at a CAGR of 6.6% during the forecast period. Waste-to-Energy conversion turns everyday trash into useful power using technologies like combustion, gasification, and biological treatment. Rather than letting non-recyclable waste occupy landfills, specialized plants generate electricity, thermal power, or biofuels from it, reducing harmful emissions and limiting environmental degradation. Advanced pollution-control systems ensure cleaner operations, making the process more eco-friendly. Because it transforms discarded waste into productive energy, this approach supports circular economy principles and decreases reliance on conventional fossil resources. With global waste levels increasing, many countries are adopting Waste-to-Energy solutions as a dual strategy for efficient waste management and renewable energy generation, contributing to sustainable development goals.

According to Eninrac Consulting's summary of MNRE data, India's installed capacity for WtE stood at around 300 MW as of early 2023, with significant expansion planned through public-private partnerships and urban local body initiatives.

Market Dynamics:

Driver:

Rising municipal solid waste generation

The continuous increase in solid waste, driven by urban expansion, higher consumer activity, and population growth, is placing heavy pressure on landfill infrastructure. Traditional dumping methods demand large land areas and contribute to air and soil pollution, creating sustainability challenges. Waste-to-Energy systems address these issues by converting mixed, non-recyclable waste into electricity, steam, or fuel, reducing the burden on landfill sites. Many governments are investing in WtE plants to ensure cleaner urban environments and better waste management. Because these plants treat large waste volumes while generating power, they serve as a dual-benefit solution. With global waste quantities rising every year, the market for WtE solutions continues to strengthen.

Restraint:

High capital investment requirements

Establishing Waste-to-Energy plants demands heavy financial investment due to advanced machinery, emission filters, land acquisition, and facility construction. Compared to conventional waste disposal or recycling options, WtE technology is far more costly to install and operate. Developing nations often face funding shortages, making it difficult to launch large-scale projects. In addition, strict regulatory approvals and environmental assessments increase project timelines and expenses, creating hesitation among investors. Although revenues can eventually be earned from energy production and tipping fees, financial returns take many years. Because of high capital costs and slow payback periods, many governments and private developers remain cautious about adopting WtE plants.

Opportunity:

Expansion of circular economy initiatives

Growing interest in circular economy principles is creating strong opportunities for the Waste-to-Energy sector. Instead of discarding trash in landfills, WtE helps recover usable energy from non-recyclable materials, supporting resource efficiency. Governments, municipalities, and corporations are embracing sustainable waste systems to meet climate and ESG targets, making WtE an attractive choice. Businesses aiming for carbon neutrality also view WtE as a tool to reduce emissions and improve operational sustainability. As more regions shift from traditional disposal to regenerative resource practices, WtE becomes a core component in waste management plans. The global movement toward recycling, reuse, and energy recovery significantly boosts market potential.

Threat:

Competition from recycling and composting solutions

Recycling, composting, and zero-landfill strategies increasingly compete with Waste-to-Energy facilities. Since many governments view material recovery as a higher environmental priority, they often direct waste toward sorting plants and compost units rather than WtE systems. Improved recycling technologies and low-cost organic processing reduce the amount of waste available for energy generation. Activists also claim that WtE might reduce motivation for recycling efforts if waste is burned instead of repurposed. As more regions introduce strict recycling mandates, WtE plants may struggle to secure enough feedstock, affecting efficiency and profit margins. This rising preference for recycling threatens future WtE expansion.

Covid-19 Impact:

COVID-19 created both challenges and opportunities for the Waste-to-Energy sector. During lockdowns, reduced commercial activity caused lower waste generation, affecting plant operations and feedstock availability. Many WtE projects faced delays because of supply chain disruptions, limited workforce, and restrictions on construction. At the same time, rising volumes of household and medical waste highlighted the importance of safe, scientific waste treatment. Governments and municipalities adopted WtE as a secure disposal method, especially for infectious materials. Increased focus on sanitation and environmental health encouraged investment in advanced waste management technologies. As restrictions eased, suspended projects restarted, supporting market stabilization and future growth.

The municipal solid waste (MSW) segment is expected to be the largest during the forecast period

The municipal solid waste (MSW) segment is expected to account for the largest market share during the forecast period, mainly because city-based waste is generated in massive and constant quantities. Homes, offices, restaurants, and public institutions produce mixed waste that cannot be entirely recycled or dumped safely. WtE facilities are designed to treat these varied waste streams and convert them into usable power or heat, offering a reliable solution for municipalities. Policymakers support MSW-based WtE projects to reduce landfill dependence and improve urban cleanliness. With increasing population and rapid urban growth, MSW volumes continue rising, providing a steady and practical fuel source for energy recovery systems, making it the leading WtE segment.

The gasification segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the gasification segment is predicted to witness the highest growth rate, mainly because it transforms solid waste into syngas with fewer pollutants than incineration. The system operates at high heat with limited oxygen, producing gas that can be used for electricity production, heating applications, or advanced fuels. Its flexibility, ability to treat different waste types, and compact plant layouts make it a practical option for expanding cities. Governments and private developers are increasingly selecting gasification to achieve cleaner operations, higher efficiency, and minimal residual ash. With rising demand for low-emission waste solutions, this technology is receiving increased funding and market attention worldwide.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share because it has well-developed treatment systems, strict environmental laws, and aggressive landfill reduction rules. Nations like Denmark, Sweden, Germany, and the Netherlands rely on WtE facilities to manage municipal waste while producing power and district heating. The region's policies focus on recycling, emission reduction, and circular resource use, making WtE an important part of national waste strategies. Supportive regulations, climate goals, and technological advancements continue driving new plant construction. Since urban areas have limited space for landfills and high sustainability awareness, Europe prioritizes energy recovery from waste, allowing it to maintain the highest share in the global market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR because of expanding cities, increasing population density, and surging waste volumes. Many areas are running out of landfill space, encouraging authorities to adopt WtE plants as an alternative disposal method. Countries including China, India, Japan, and South Korea are upgrading waste systems and using technologies like gasification and incineration to generate clean power. Government incentives, infrastructure funding, and partnerships with private developers are speeding construction of new facilities. With stronger environmental policies and rising demand for renewable energy, Asia-Pacific continues to show the highest growth momentum in the global WtE sector.

Key players in the market

Some of the key players in Waste-to-Energy Conversion Market include A2z Group, Abellon Clean Energy Ltd, Ecogreen Energy Pvt. Ltd, Il&fs Environnemental Infrastructure And Services Limited, Suez Group, Hitachi Zosen Inova, Hydroair Techtonics (pcd) Limited, Jitf Urban Infrastructure Limited, Mailhem Environment Pvt. Ltd, Ramky Enviro Engineers Ltd, Rollz India Waste Management, Veolia Environnement SA, Gj Eco Power Pvt. Ltd, Covanta Holding Corporation and JFE Engineering Corporation.

Key Developments:

In June 2025, Veolia, the world leader in hazardous waste treatment with 5b$ in this activity, patented technologies and a worldwide presence, today announced actions to expand its hazardous waste treatment and disposal business in North America through investment, acquisitions and capacity expansion. The company announced c.$350 million (€300m) in global investments worldwide, including three new U.S. acquisitions in Massachusetts and California and reaffirmed plans to expand existing facilities.

In April 2025, SUEZ and the Gabonese Energy and Water Company (SEEG) have signed a five-year contract to optimize drinking water production and distribution services in Libreville and major cities in Gabon. Under this new contract, SUEZ will work alongside SEEG across all its business lines, including production, transport, distribution, and customer management.

In October 2024, A2Z Cust2mate Solutions Corp. announced it has signed a framework agreement with Trixo ("Trixo"), a leading retail technology integrator providing technology and IT and other services in Mexico and Central America, for in-field installation, deployment, in-store and laboratory support, maintenance, help desk services and warranty fulfillment related to the company's Cust2Mate smart cart solutions to be rolled out in Mexico and Central America.

Waste Types Covered:

  • Municipal Solid Waste (MSW)
  • Industrial Waste
  • Agricultural Waste
  • Medical Waste
  • Electronic Waste (E-Waste)
  • Hazardous Waste

Technologies Covered:

  • Incineration
  • Gasification
  • Pyrolysis
  • Anaerobic Digestion
  • Fermentation
  • Plasma Arc Treatment
  • Mechanical-Biological Treatment (MBT)

Applications Covered:

  • Electricity Generation
  • Heat Generation
  • Combined Heat and Power (CHP)
  • Fuel Production

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Waste-to-Energy Conversion Market, By Waste Type

  • 5.1 Introduction
  • 5.2 Municipal Solid Waste (MSW)
  • 5.3 Industrial Waste
  • 5.4 Agricultural Waste
  • 5.5 Medical Waste
  • 5.6 Electronic Waste (E-Waste)
  • 5.7 Hazardous Waste

6 Global Waste-to-Energy Conversion Market, By Technology

  • 6.1 Introduction
  • 6.2 Incineration
  • 6.3 Gasification
  • 6.4 Pyrolysis
  • 6.5 Anaerobic Digestion
  • 6.6 Fermentation
  • 6.7 Plasma Arc Treatment
  • 6.8 Mechanical-Biological Treatment (MBT)

7 Global Waste-to-Energy Conversion Market, By Application

  • 7.1 Introduction
  • 7.2 Electricity Generation
  • 7.3 Heat Generation
  • 7.4 Combined Heat and Power (CHP)
  • 7.5 Fuel Production

8 Global Waste-to-Energy Conversion Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 A2z Group
  • 10.2 Abellon Clean Energy Ltd
  • 10.3 Ecogreen Energy Pvt. Ltd
  • 10.4 Il&fs Environnemental Infrastructure And Services Limited
  • 10.5 Suez Group
  • 10.6 Hitachi Zosen Inova
  • 10.7 Hydroair Techtonics (pcd) Limited
  • 10.8 Jitf Urban Infrastructure Limited
  • 10.9 Mailhem Environment Pvt. Ltd
  • 10.10 Ramky Enviro Engineers Ltd
  • 10.11 Rollz India Waste Management
  • 10.12 Veolia Environnement SA
  • 10.13 Gj Eco Power Pvt. Ltd
  • 10.14 Covanta Holding Corporation
  • 10.15 JFE Engineering Corporation

List of Tables

  • Table 1 Global Waste-to-Energy Conversion Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Waste-to-Energy Conversion Market Outlook, By Waste Type (2024-2032) ($MN)
  • Table 3 Global Waste-to-Energy Conversion Market Outlook, By Municipal Solid Waste (MSW) (2024-2032) ($MN)
  • Table 4 Global Waste-to-Energy Conversion Market Outlook, By Industrial Waste (2024-2032) ($MN)
  • Table 5 Global Waste-to-Energy Conversion Market Outlook, By Agricultural Waste (2024-2032) ($MN)
  • Table 6 Global Waste-to-Energy Conversion Market Outlook, By Medical Waste (2024-2032) ($MN)
  • Table 7 Global Waste-to-Energy Conversion Market Outlook, By Electronic Waste (E-Waste) (2024-2032) ($MN)
  • Table 8 Global Waste-to-Energy Conversion Market Outlook, By Hazardous Waste (2024-2032) ($MN)
  • Table 9 Global Waste-to-Energy Conversion Market Outlook, By Technology (2024-2032) ($MN)
  • Table 10 Global Waste-to-Energy Conversion Market Outlook, By Incineration (2024-2032) ($MN)
  • Table 11 Global Waste-to-Energy Conversion Market Outlook, By Gasification (2024-2032) ($MN)
  • Table 12 Global Waste-to-Energy Conversion Market Outlook, By Pyrolysis (2024-2032) ($MN)
  • Table 13 Global Waste-to-Energy Conversion Market Outlook, By Anaerobic Digestion (2024-2032) ($MN)
  • Table 14 Global Waste-to-Energy Conversion Market Outlook, By Fermentation (2024-2032) ($MN)
  • Table 15 Global Waste-to-Energy Conversion Market Outlook, By Plasma Arc Treatment (2024-2032) ($MN)
  • Table 16 Global Waste-to-Energy Conversion Market Outlook, By Mechanical-Biological Treatment (MBT) (2024-2032) ($MN)
  • Table 17 Global Waste-to-Energy Conversion Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global Waste-to-Energy Conversion Market Outlook, By Electricity Generation (2024-2032) ($MN)
  • Table 19 Global Waste-to-Energy Conversion Market Outlook, By Heat Generation (2024-2032) ($MN)
  • Table 20 Global Waste-to-Energy Conversion Market Outlook, By Combined Heat and Power (CHP) (2024-2032) ($MN)
  • Table 21 Global Waste-to-Energy Conversion Market Outlook, By Fuel Production (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.