封面
市場調查報告書
商品編碼
1856851

廢棄物物聯網與人工智慧整合市場預測至2032年:按組件、廢棄物類型、部署模式、技術、應用、最終用戶和地區分類的全球分析

Internet of Waste & AI Integration Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Waste Type, Deployment Mode, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球廢棄物網際網路和人工智慧整合市場預計到 2025 年將達到 50.2 億美元,到 2032 年將達到 177.9 億美元,預測期內複合年成長率為 19.8%。

廢棄物網際網路(IoW)與人工智慧(AI)的融合正在將廢棄物管理轉變為一個更聰明和永續的系統。 IoW利用物聯網連接的感測器和設備持續追蹤廢棄物的產生、分類和處置,而AI則處理這些數據,以最佳化收集計劃、預測廢棄物模式並提高回收效率。這種結合有助於降低成本、減少環境足跡並最大限度地提高材料回收率。透過提供精準的洞察,它使政府和組織能夠實施有效的廢棄物管理策略。簡而言之,IoW與AI的合作正在推動更智慧、更環保、更有效率的廢棄物管理方法的發展。

根據聯合國環境規劃署(環境署)發布的《全球廢棄物管理展望》數據,每年產生的城市固態廢棄物超過20億噸,而數位化和人工智慧系統正日益被推薦用於最佳化收集、分類和回收。環境署倡導使用智慧垃圾桶、感測器網路和人工智慧驅動的路線規劃,以減少對環境的影響並提高營運效率。

都市化和廢棄物產生

快速的城市發展和不斷成長的人口數量正顯著推動著「廢棄物聯網」(IoW)與人工智慧(AI)整合市場的發展。城市擴張導致生活垃圾、廢棄物和市政工業廢棄物的數量不斷增加,為垃圾的收集、分類和處置帶來了挑戰。將人工智慧與垃圾物聯網結合,能夠為即時監測和高效管理提供創新解決方案,廢棄物環境影響和營運效率低下問題。物聯網感測器提供持續數據,支援預測分析和簡化廢棄物收集流程。都市區對永續、經濟高效且技術先進的廢棄物管理解決方案的需求,正在推動智慧型系統的應用,使人工智慧主導的垃圾物聯網成為有效處理現代城市廢棄物的關鍵工具。

高昂的實施成本

高昂的實施成本阻礙了整合「廢棄物聯網」(IoW)和人工智慧(AI)的廢棄物管理系統的普及。部署物聯網基礎設施,例如智慧垃圾桶、感測器和監控系統,需要大量的初始投資。而將人工智慧技術應用於預測分析、路線規劃和自動化廢棄物處理,則進一步增加了成本。小型企業和市政當局可能面臨資金限制,難以採用這些先進解決方案。軟體維護、升級和員工培訓的持續成本也加重了財務負擔。因此,基於「廢棄物物聯網」和人工智慧的系統所需的大量資金和營運成本,對市場構成了重大限制,尤其是在資金有限或規模較小的地區。

與可再生能源和循環經濟的融合

人們日益關注循環經濟原則和可再生能源,這為人工智慧驅動的「廢棄物網路」(IoW)解決方案帶來了廣闊前景。透過物聯網監控和人工智慧驅動的預測分析,廢棄物能源化、堆肥和資源回收等技術可以變得更有效率。這些系統透過了解廢棄物的類型和數量,最佳化回收流程、能源產出和材料再利用。市政當局和企業可以減少對掩埋的依賴,提高永續性,並從回收材料中獲得收入。隨著循環經濟成為一項策略重點,整合人工智慧的「廢棄物網際網路」平台將在高效監控和管理廢棄物方面發揮核心作用。這種協同效應將推動對環保廢棄物管理技術的創新、合作和投資。

供應商之間競爭激烈

物聯網和人工智慧整合市場正面臨智慧廢棄物管理解決方案供應商之間的激烈競爭。新興企業和老牌公司的崛起造成了價格壓力,降低了利潤率,並增強了客戶的議價能力。激烈的競爭要求企業不斷創新以實現產品差異化;缺乏創新可能導致市場佔有率的喪失。競爭對手之間的併購和聯盟等策略性措施進一步加劇了市場挑戰。無法適應快速發展的技術和競爭策略的公司將面臨落後的風險。隨著解決方案提供者數量的成長,在這種競爭環境下保持成長和客戶忠誠度變得越來越困難。

新冠疫情的影響:

新冠疫情對「廢棄物網際網路」(IoW)和人工智慧整合市場產生了重大影響,既帶來了挑戰,也帶來了機會。封鎖措施擾亂了廢棄物收集,延緩了智慧基礎設施計劃,供應鏈問題和資金限制也減緩了新技術的普及應用。同時,生物醫學垃圾、醫療廢棄物和生活廢棄物的激增凸顯了自動化、非接觸式和智慧化廢棄物管理系統的必要性。隨著政府和市政當局尋求即時數據、預測工具和最佳化的收集策略以維護衛生和提高營運效率,人工智慧驅動的「廢物網路」解決方案變得日益重要。疫情最終凸顯了數位化和人工智慧驅動的廢棄物解決方案在確保安全、永續和高效的廢棄物管理方面發揮的關鍵作用。

預計在預測期內,雲端基礎的細分市場將佔據最大佔有率。

由於其擴充性、易於適應性和低實施成本,預計在預測期內,雲端基礎方案將佔據最大的市場佔有率。這些平台使政府和組織能夠隨時隨地即時監控廢棄物的產生、分類和處置,從而提高營運效率。它們還支援人工智慧主導的洞察、預測分析和自動化流程,而無需龐大的現場基礎設施​​。雲端解決方案可與物聯網設備無縫整合,實現遠端系統管理和持續軟體更新,使其非常適合不斷發展的城市環境。靈活性、便利性和低維護成本的結合,使雲端部署成為該市場的首選方案。

預計在預測期內,市政和智慧城市領域將實現最高的複合年成長率。

預計在預測期內,市政和智慧城市領域將實現最高成長率。不斷成長的城市人口、日益嚴重的環境問題以及對永續城市發展的追求,正促使城市管理部門採用人工智慧主導的物聯網解決方案。這些技術能夠實現預測性廢棄物分析、最佳化收集路線、即時監控和流程自動化,從而降低成本並提高營運效率。智慧城市計畫優先考慮綠色和以數據為中心的城市管理,這為人工智慧整合的廢棄物系統提供了巨大的潛力。透過提高合規性、資源利用率和服務效率,在市政廢棄物營運中採用智慧物聯網解決方案,是推動此細分市場實現最高成長率的重要因素。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率,這得益於其強大的技術基礎設施、廣泛的智慧城市項目以及支持永續廢棄物管理的政府政策。該地區受益於先進的物聯網連接、人工智慧技術以及以數據為中心的市政系統,從而提高了廢棄物監測、分類和回收效率。健全的法律規範、日益增強的環保意識以及主要行業參與者的存在進一步鞏固了北美市場的主導地位。北美許多城市正在採用人工智慧驅動的物聯網平台,以提高效率、降低營運成本並促進環保廢棄物處理。所有這些因素共同作用,使北美成為智慧廢棄物管理解決方案市場佔有率最大的地區。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率。中國、印度和東南亞等國家快速的城市化進程、不斷擴大的工業活動以及人口的成長,都催生了對高效能廢棄物管理技術的強勁需求。各國政府致力於提升智慧城市和數位基礎設施建設的舉措,正在加速人工智慧驅動的物聯網平台的應用。日益增強的環保意識和支持永續廢棄物處理實踐的法規,進一步推動了市場擴張。由於對經濟高效、擴充性且技術先進的解決方案有著極高的需求,亞太地區已成為成長最快的市場,這為供應商在人工智慧驅動的廢棄物管理領域進行創新並鞏固自身地位提供了絕佳機會。

免費提供客製化服務:

訂閱本報告的用戶可享有以下免費客製化服務之一:

  • 公司簡介
    • 對至多三家其他市場公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究資訊來源
    • 初級研究資訊來源
    • 次級研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球廢棄物網際網路與人工智慧整合市場(按組件分類)

  • 硬體
  • 軟體
  • 服務

6. 全球廢棄物網際網路與人工智慧整合市場(按廢棄物類型分類)

  • 都市固態廢棄物
  • 工業製程廢棄物
  • 危險和廢棄物廢棄物
  • 電子廢棄物(電子廢棄物)
  • 醫療和廢棄物廢棄物

7. 全球廢棄物網際網路與人工智慧整合市場(按部署類型分類)

  • 雲端基礎的
  • 本地部署
  • 混合部署

8. 全球廢棄物網際網路與人工智慧整合市場(按技術分類)

  • 物聯網基礎設施
  • 人工智慧
  • 機器人與自動化
  • 雲端運算和邊緣運算

9. 全球廢棄物網際網路與人工智慧整合市場(按應用領域分類)

  • 智慧廢棄物收集
  • 廢棄物分類與回收
  • 掩埋監測
  • 路線最佳化
  • 排放追蹤

第10章 全球廢棄物網際網路與人工智慧整合市場(按最終用戶分類)

  • 地方政府和智慧城市
  • 工業設施
  • 商業企業
  • 住房部門
  • 廢棄物管理公司

第11章 全球廢棄物網際網路與人工智慧融合市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第13章:企業概況

  • AI Superior
  • Greyparrot
  • Recycleye
  • EverestLabs
  • CleanRobotics
  • Big Belly Solar, LLC
  • Bine sp. z oo
  • Ecube Labs Co. Ltd.
  • AMP
  • Veolia
  • RTS
  • Bridgera
  • Rubicon Global
  • ZenRobotics
  • Waste Robotics
Product Code: SMRC31723

According to Stratistics MRC, the Global Internet of Waste & AI Integration Market is accounted for $5.02 billion in 2025 and is expected to reach $17.79 billion by 2032 growing at a CAGR of 19.8% during the forecast period. The fusion of the Internet of Waste (IoW) and Artificial Intelligence (AI) is transforming waste management into a more intelligent and sustainable system. IoW employs IoT-connected sensors and devices to track waste generation, sorting, and disposal continuously, while AI processes this data to streamline collection schedules, forecast waste patterns, and enhance recycling efficiency. This combination helps lower costs, reduce environmental footprint, and maximize material recovery. By delivering precise insights, it empowers governments and organizations to implement effective waste strategies. In essence, the collaboration between IoW and AI is driving the development of smarter, environmentally conscious, and resource-efficient waste management practices.

According to the United Nations Environment Programme (UNEP), data from its Global Waste Management Outlook shows that over 2 billion tonnes of municipal solid waste are generated annually, with digital and AI-based systems increasingly recommended to optimize collection, segregation, and recycling. UNEP advocates for smart bins, sensor networks, and AI-driven route planning to reduce environmental impact and improve operational efficiency.

Market Dynamics:

Driver:

Growing urbanization and waste generation

Rapid urban growth and rising population levels significantly drive the Internet of Waste (IoW) and AI market. Expanding cities generate increasing amounts of household, industrial, and municipal waste, which creates challenges for collection, sorting, and disposal. Integrating AI with IoW offers innovative solutions for real-time monitoring and efficient management, reducing environmental impact and operational inefficiencies. IoT sensors provide continuous data, enabling predictive analytics and streamlined waste collection. The demand for sustainable, cost-efficient, and technologically advanced waste management solutions in urban areas encourages the adoption of intelligent systems, establishing AI-driven IoW as a crucial tool for handling modern urban waste effectively.

Restraint:

High implementation costs

The adoption of Internet of Waste (IoW) and AI-integrated waste management systems is hindered by high implementation costs. Deploying IoT infrastructure, including smart bins, sensors, and monitoring systems, involves considerable initial investment. Incorporating AI technologies for predictive analysis, route planning, and automated waste handling further escalates expenses. Small-scale businesses and municipalities may struggle with financial limitations, limiting their ability to adopt these advanced solutions. Continuous costs for software maintenance, upgrades, and staff training add to the financial burden. Consequently, the substantial capital and operational requirements of IoW and AI-based systems act as a major market restraint, particularly in regions with limited funding or smaller operational scales.

Opportunity:

Integration with renewable energy and circular economy

The increasing focus on circular economy principles and renewable energy offers significant prospects for AI-enabled Internet of Waste (IoW) solutions. Technologies like waste-to-energy conversion, composting, and resource recovery gain efficiency through IoT monitoring and AI-powered predictive analysis. By understanding waste types and volumes, these systems optimize recycling processes, energy generation, and material reuse. Municipalities and industries can reduce landfill reliance, enhance sustainability, and create revenue streams from recovered resources. As the circular economy becomes a strategic priority, AI-integrated IoW platforms play a central role in monitoring and managing waste efficiently. This synergy encourages innovation, collaboration, and investment in environmentally responsible waste management technologies.

Threat:

Intense competition among vendors

The IoW and AI market is threatened by stiff competition among vendors offering intelligent waste management solutions. A growing number of startups and established firms create pricing pressures, diminish profit margins, and increase the bargaining power of clients. Intense rivalry requires continuous innovation to differentiate products; failure to innovate can lead to loss of market share. Strategic moves such as mergers, acquisitions, or partnerships among competitors further intensify market challenges. Companies unable to adapt to fast-evolving technologies and competitive strategies risk falling behind. As the number of solution providers grows, sustaining growth and customer loyalty becomes increasingly difficult in this highly competitive environment.

Covid-19 Impact:

The COVID-19 outbreak significantly influenced the AI-integrated Internet of Waste (IoW) market, creating both challenges and opportunities. Lockdowns disrupted waste collection, delayed smart infrastructure projects, and slowed the adoption of new technologies due to supply chain issues and financial limitations. Simultaneously, the surge in biomedical, medical, and household waste emphasized the need for automated, contactless, and intelligent waste management systems. AI-powered IoW solutions gained importance as governments and municipalities sought real-time data, predictive tools, and optimized collection strategies to maintain sanitation and operational efficiency. The pandemic ultimately highlighted the critical role of digital and AI-enabled waste solutions in ensuring safe, sustainable, and efficient waste management.

The cloud-based segment is expected to be the largest during the forecast period

The cloud-based segment is expected to account for the largest market share during the forecast period due to its ease of scalability, adaptability, and lower implementation costs. These platforms allow governments and organizations to monitor waste generation, segregation, and disposal in real-time from any location, enhancing operational efficiency. They also support AI-driven insights, predictive analytics, and automated processes without the need for extensive on-site infrastructure. Cloud solutions provide seamless integration with IoT devices, remote system management, and continuous software updates, making them highly practical for expanding urban environments. The combination of flexibility, convenience, and minimal maintenance makes cloud deployment the preferred choice in this market.

The municipalities & smart cities segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the municipalities & smart cities segment is predicted to witness the highest growth rate. Expanding urban populations, heightened environmental concerns, and the push for sustainable urban development are motivating city authorities to implement AI-driven IoW solutions. These technologies enable predictive waste analytics, optimized collection routes, real-time monitoring, and automated processes, reducing costs and improving operational efficiency. Smart city programs prioritize eco-friendly, data-centric urban management, offering significant prospects for AI-integrated waste systems. By enhancing compliance, resource utilization, and service efficiency, the adoption of intelligent IoW solutions in municipal waste operations positions this segment as the highest growth rate contributor in the market.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its robust technological infrastructure, widespread smart city programs, and supportive governmental policies promoting sustainable waste management. The region benefits from advanced IoT connectivity, AI capabilities, and data-centric municipal systems that enhance waste monitoring, segregation, and recycling efficiency. Strong regulatory frameworks, growing environmental consciousness, and the presence of key industry players further strengthen its market dominance. Many North American cities are adopting AI-powered IoW platforms to improve efficiency, cut operational costs, and promote eco-friendly waste practices. Collectively, these factors establish North America as the region with the largest market share for intelligent waste management solutions.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid urban growth, expanding industrial activities, and population increases in nations such as China, India, and Southeast Asia are creating strong demand for efficient waste management technologies. Government initiatives focusing on smart cities and enhanced digital infrastructure are accelerating the adoption of AI-powered IoW platforms. Rising environmental consciousness and supportive regulations for sustainable waste practices further drive market expansion. The region's need for cost-effective, scalable, and technologically advanced solutions makes it the fastest-growing market, offering significant opportunities for vendors to innovate and strengthen their presence in AI-enabled waste management.

Key players in the market

Some of the key players in Internet of Waste & AI Integration Market include AI Superior, Greyparrot, Recycleye, EverestLabs, CleanRobotics, Big Belly Solar, LLC, Bine sp. z o. o., Ecube Labs Co. Ltd., AMP, Veolia, RTS, Bridgera, Rubicon Global, ZenRobotics and Waste Robotics.

Key Developments:

In June 2025, Greyparrot has launched Deepnest: a world-first AI waste intelligence platform that gives brands direct access to their recyclable waste data. What happens to products when they become waste is a knowledge gap for most industries. This is due to limitations of waste infrastructure and a lack of available data. Deepnest plugs this knowledge gap, unlocking post-use packaging performance insights to help brands shape their products and business models.

In June 2024, Bigbelly Solar, LLC, a world leader in public space waste and recycling solutions for more than 20 years, marked the grand opening of its U.S. manufacturing facility. The facility, which straddles the communities of Methuen and Lawrence, is the primary production location for Bigbelly-branded bins, from budget-friendly to solar-powered smart waste options.

In October 2023, EverestLabs has announced that it is expanding globally with the opening of a new Robotics Operations Center office in Guntur, Andhra Pradesh, India. EverestLabs, developer of RecycleOS, an AI-enabled operating system for MRFs, expands into India which aligns with the company's commitment to support worldwide customers and is becoming a global powerhouse for engineering talent.

Components Covered:

  • Hardware
  • Software
  • Services

Waste Types Covered:

  • Municipal Solid Waste
  • Industrial Process Waste
  • Hazardous & Toxic Waste
  • Electronic Waste (E-waste)
  • Biomedical & Clinical Waste

Deployment Modes Covered:

  • Cloud-Based
  • On-Premise
  • Hybrid Deployments

Technologies Covered:

  • IoT Infrastructure
  • Artificial Intelligence
  • Robotics & Automation
  • Cloud & Edge Computing

Applications Covered:

  • Smart Waste Collection
  • Waste Sorting & Recycling
  • Landfill Monitoring
  • Route Optimization
  • Emission Tracking

End Users Covered:

  • Municipalities & Smart Cities
  • Industrial Facilities
  • Commercial Enterprises
  • Residential Sector
  • Waste Management Companies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Internet of Waste & AI Integration Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Internet of Waste & AI Integration Market, By Waste Type

  • 6.1 Introduction
  • 6.2 Municipal Solid Waste
  • 6.3 Industrial Process Waste
  • 6.4 Hazardous & Toxic Waste
  • 6.5 Electronic Waste (E-waste)
  • 6.6 Biomedical & Clinical Waste

7 Global Internet of Waste & AI Integration Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Cloud-Based
  • 7.3 On-Premise
  • 7.4 Hybrid Deployments

8 Global Internet of Waste & AI Integration Market, By Technology

  • 8.1 Introduction
  • 8.2 IoT Infrastructure
  • 8.3 Artificial Intelligence
  • 8.4 Robotics & Automation
  • 8.5 Cloud & Edge Computing

9 Global Internet of Waste & AI Integration Market, By Application

  • 9.1 Introduction
  • 9.2 Smart Waste Collection
  • 9.3 Waste Sorting & Recycling
  • 9.4 Landfill Monitoring
  • 9.5 Route Optimization
  • 9.6 Emission Tracking

10 Global Internet of Waste & AI Integration Market, By End User

  • 10.1 Introduction
  • 10.2 Municipalities & Smart Cities
  • 10.3 Industrial Facilities
  • 10.4 Commercial Enterprises
  • 10.5 Residential Sector
  • 10.6 Waste Management Companies

11 Global Internet of Waste & AI Integration Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 AI Superior
  • 13.2 Greyparrot
  • 13.3 Recycleye
  • 13.4 EverestLabs
  • 13.5 CleanRobotics
  • 13.6 Big Belly Solar, LLC
  • 13.7 Bine sp. z o. o.
  • 13.8 Ecube Labs Co. Ltd.
  • 13.9 AMP
  • 13.10 Veolia
  • 13.11 RTS
  • 13.12 Bridgera
  • 13.13 Rubicon Global
  • 13.14 ZenRobotics
  • 13.15 Waste Robotics

List of Tables

  • Table 1 Global Internet of Waste & AI Integration Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Internet of Waste & AI Integration Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Internet of Waste & AI Integration Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 4 Global Internet of Waste & AI Integration Market Outlook, By Software (2024-2032) ($MN)
  • Table 5 Global Internet of Waste & AI Integration Market Outlook, By Services (2024-2032) ($MN)
  • Table 6 Global Internet of Waste & AI Integration Market Outlook, By Waste Type (2024-2032) ($MN)
  • Table 7 Global Internet of Waste & AI Integration Market Outlook, By Municipal Solid Waste (2024-2032) ($MN)
  • Table 8 Global Internet of Waste & AI Integration Market Outlook, By Industrial Process Waste (2024-2032) ($MN)
  • Table 9 Global Internet of Waste & AI Integration Market Outlook, By Hazardous & Toxic Waste (2024-2032) ($MN)
  • Table 10 Global Internet of Waste & AI Integration Market Outlook, By Electronic Waste (E-waste) (2024-2032) ($MN)
  • Table 11 Global Internet of Waste & AI Integration Market Outlook, By Biomedical & Clinical Waste (2024-2032) ($MN)
  • Table 12 Global Internet of Waste & AI Integration Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 13 Global Internet of Waste & AI Integration Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 14 Global Internet of Waste & AI Integration Market Outlook, By On-Premise (2024-2032) ($MN)
  • Table 15 Global Internet of Waste & AI Integration Market Outlook, By Hybrid Deployments (2024-2032) ($MN)
  • Table 16 Global Internet of Waste & AI Integration Market Outlook, By Technology (2024-2032) ($MN)
  • Table 17 Global Internet of Waste & AI Integration Market Outlook, By IoT Infrastructure (2024-2032) ($MN)
  • Table 18 Global Internet of Waste & AI Integration Market Outlook, By Artificial Intelligence (2024-2032) ($MN)
  • Table 19 Global Internet of Waste & AI Integration Market Outlook, By Robotics & Automation (2024-2032) ($MN)
  • Table 20 Global Internet of Waste & AI Integration Market Outlook, By Cloud & Edge Computing (2024-2032) ($MN)
  • Table 21 Global Internet of Waste & AI Integration Market Outlook, By Application (2024-2032) ($MN)
  • Table 22 Global Internet of Waste & AI Integration Market Outlook, By Smart Waste Collection (2024-2032) ($MN)
  • Table 23 Global Internet of Waste & AI Integration Market Outlook, By Waste Sorting & Recycling (2024-2032) ($MN)
  • Table 24 Global Internet of Waste & AI Integration Market Outlook, By Landfill Monitoring (2024-2032) ($MN)
  • Table 25 Global Internet of Waste & AI Integration Market Outlook, By Route Optimization (2024-2032) ($MN)
  • Table 26 Global Internet of Waste & AI Integration Market Outlook, By Emission Tracking (2024-2032) ($MN)
  • Table 27 Global Internet of Waste & AI Integration Market Outlook, By End User (2024-2032) ($MN)
  • Table 28 Global Internet of Waste & AI Integration Market Outlook, By Municipalities & Smart Cities (2024-2032) ($MN)
  • Table 29 Global Internet of Waste & AI Integration Market Outlook, By Industrial Facilities (2024-2032) ($MN)
  • Table 30 Global Internet of Waste & AI Integration Market Outlook, By Commercial Enterprises (2024-2032) ($MN)
  • Table 31 Global Internet of Waste & AI Integration Market Outlook, By Residential Sector (2024-2032) ($MN)
  • Table 32 Global Internet of Waste & AI Integration Market Outlook, By Waste Management Companies (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.