封面
市場調查報告書
商品編碼
1787916

數位循環經濟市場,預測至 2032 年:按組件、部署模式、組織規模、經營模式、技術、最終用戶和地區進行的全球分析

Digital Circular Economy Market Forecasts to 2032 - Global Analysis By Component, Deployment Mode, Organization Size (Large Enterprises and Small & Medium Enterprises ), Business Model, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球數位循環經濟市場預計在 2025 年達到 34.6 億美元,預計到 2032 年將達到 178.7 億美元,預測期內的複合年成長率為 26.42%。

數位循環經濟是一種利用區塊鏈、物聯網、巨量資料和人工智慧等數位技術,透過鼓勵回收、再利用和減少廢棄物來促進資源永續利用的經濟結構。數位創新與循環經濟理念結合,可以建構封閉式系統,提高供應鏈透明度,並最佳化產品生命週期。透過延長產品壽命和再生自然系統,此模式在產生經濟效益的同時,減少了對環境的影響。它還有助於最佳化決策、即時監控和跨行業協作,從而實現強勁的低廢棄物經濟。

對資源最佳化和減少廢棄物的需求日益增加

企業擴大使用數位技術來追蹤資源使用情況並減少廢棄物產生。區塊鏈、物聯網和人工智慧等最尖端科技使即時追蹤和有效的回收程序成為可能。這些發展降低了營運成本和原料消費量。為了實現永續性目標,政府和組織正在鼓勵循環經濟行為。因此,各行各業對數位循環解決方案的需求都在迅速成長。

系統調試和維護的複雜性

整合數位平台通常使用多種技術,導致故障檢測成本高且耗時。不一致的資料流和互通性問題使系統診斷更加困難。追蹤、回收和再製造等循環活動原本順暢無阻,卻因頻繁的技術中斷而受阻。此外,合格專家的短缺也延緩了技術問題的快速解決。這些困難降低了業務效率,並阻礙了企業實施循環數位解決方案。

融合AI、IoT、區塊鏈等前沿技術

人工智慧能夠透過預測分析減少廢棄物並有效最佳化資源。物聯網能夠即時追蹤物品和材料的整個生命週期。在循環價值鏈中,區塊鏈能夠確保資料共用的安全性、可追溯性和透明度。這些技術共同促進了永續的回收、消費和生產模式,使企業能夠提高業務效率,減少環境影響,並推動封閉式經濟。

網路安全和資料隱私問題

對資料外洩的擔憂常常阻礙組織使用數位平台來追蹤和共用資源。由於不安全的數位基礎設施,敏感資料(包括供應鏈資訊和專有設計)可能會外洩。這種風險阻礙了整個價值鏈的協作,並損害了相關人員的信任。遵守眾多國際資料保護條例會增加複雜性和成本。因此,數位流通計劃發展緩慢,可擴充性有限。

COVID-19的影響

由於企業面臨全球供應鏈和資源可得性中斷,新冠疫情顯著加速了數位化循環經濟實踐的採用。封鎖和保持社交距離措施促使企業轉向數位化平台、遠端營運和虛擬市場,鼓勵重複使用、維修和共用模式。各行各業加速採用區塊鏈、人工智慧和物聯網等技術來追蹤原料並最佳化資源效率。這場危機也提高了人們對永續性和韌性的認知,促使政策制定者和組織將循環策略納入長期數位轉型計劃,以實現更強勁、更具適應性的舉措。

預計大型企業板塊在預測期內將佔據最大佔有率

預計大型企業將在預測期內佔據最大的市場佔有率,這得益於其利用先進技術最佳化資源效率並大規模減少廢棄物。這些公司正在大力投資數位平台,用於追蹤、回收和再利用複雜供應鏈中的材料。它們的全球企業發展也推動了多個地區和產業採用循環經濟模式。策略合作與環境、社會和治理 (ESG) 承諾進一步推動創新,並致力於實現循環經濟目標。此外,它們的影響力透過樹立行業標竿並鼓勵中小企業採用永續模式,加速了市場轉型。

預計汽車業在預測期內的複合年成長率最高

受智慧製造和永續設計實踐的推動,汽車產業預計將在預測期內實現最高成長率。汽車製造商擴大使用數位工具來追蹤材料並實現回收和再利用。電動車生產正在透過電池維修和二次利用來促進循環利用。數位平台正在最佳化車輛生命週期管理,減少廢棄物和資源消耗。這種轉變有助於實現永續性目標,同時降低成本並提升品牌價值。

佔比最大的地區:

由於採用智慧製造和永續設計實踐,預計亞太地區將在預測期內佔據最大的市場佔有率。汽車製造商擴大使用數位工具來追蹤材料並實現回收和再利用。電動車生產正在透過電池維修和二次利用來促進循環利用。數位平台正在最佳化車輛生命週期管理,減少廢棄物和資源消耗。這種轉變有助於實現永續性目標,同時降低成本並提升品牌價值。

複合年成長率最高的地區:

預計北美在預測期內將呈現最高的複合年成長率,這得益於企業永續性承諾、數位創新和成熟的廢棄物管理基礎設施。美國和加拿大在整合人工智慧、物聯網和雲端基礎解決方案以延長產品生命週期和實現閉合迴路系統方面處於領先地位。消費者對環保產品和透明度的需求將進一步推動數位循環策略。雖然監管支持力度不如亞太地區,但自願性ESG舉措和官民合作關係在推動各行各業(尤其是在電子、汽車和零售行業)的循環模式方面發揮著核心作用。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 二手研究資料
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章全球數位循環經濟市場組成部分

  • 解決方案
  • 服務

6. 全球數位循環經濟市場(依部署模式)

  • 雲端基礎
  • 本地

第7章全球數位循環經濟市場(依組織規模)

  • 主要企業
  • 小型企業

第8章全球數位循環經濟市場(依經營模式)

  • Product-as-a-Service(PaaS)
  • 共用平台
  • 資源回收
  • 循環輸入
  • 延長產品壽命
  • 其他經營模式

9. 全球數位循環經濟市場(按技術)

  • 區塊鏈
  • 人工智慧(AI)
  • 物聯網 (IoT)
  • 巨量資料和分析
  • 雲端運算
  • 數位雙胞胎
  • 3D列印
  • 其他技術

第 10 章全球數位循環經濟市場(依最終用戶)

  • 製造業
  • 零售和消費品
  • 電子和 IT
  • 建築和房地產
  • 農業
  • 衛生保健
  • 能源與公共產業
  • 紡織品和時尚
  • 其他最終用戶

第 11 章全球數位循環經濟市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章:企業概況

  • SAP
  • IBM
  • Microsoft
  • Google
  • Oracle
  • Capgemini
  • Accenture
  • Cisco
  • Siemens Advanta
  • Software AG
  • Landbell Group
  • KPMG
  • Anthesis Group
  • Veolia
  • Rheaply
  • Recykal
  • GreenMantra Technologies
  • CircularIQ
Product Code: SMRC30181

According to Stratistics MRC, the Global Digital Circular Economy Market is accounted for $3.46 billion in 2025 and is expected to reach $17.87 billion by 2032 growing at a CAGR of 26.42% during the forecast period. The term "digital circular economy" describes an economic structure that makes use of digital technologies, including blockchain, IoT, big data, and artificial intelligence, to encourage the sustainable use of resources by facilitating recycling, reuse, and waste reduction. It combines digital innovation and the concepts of the circular economy to enable closed-loop systems, improve supply chain transparency, and optimise product lifecycles. By prolonging product lifespans and renewing natural systems, this paradigm reduces environmental impact while generating economic benefit. In order to create robust, low-waste economies, it also makes it easier to make better decisions, monitor in real time, and collaborate across industries.

Market Dynamics:

Driver:

Rising demand for resource optimization & waste reduction

Digital technologies are being used by businesses more and more to track resource usage and reduce waste production. Real-time tracking and effective recycling procedures are made possible by cutting-edge technologies like blockchain, IoT, and AI. These developments lower operating expenses and the consumption of raw materials. In order to achieve sustainability goals, governments and organisations are encouraging circular behaviours. The need for digital circular solutions is therefore rising quickly across all industries.

Restraint:

Complexity of system debugging & maintenance

Multiple technologies are frequently used in integrated digital platforms, which make defect detection expensive and time-consuming. System diagnostics are made more difficult by inconsistent data flow and interoperability problems. Tracking, recycling, and remanufacturing are examples of smooth circular activities that are hampered by frequent technical disruptions. Furthermore, a lack of qualified experts postpones the prompt fixing of technological issues. These difficulties make operations less efficient and deter businesses from implementing circular digital solutions.

Opportunity:

Integration of advanced technologies like AI, IoT, and blockchain

AI makes predictive analytics for waste reduction and effective resource optimisation possible. Real-time tracking of items and materials throughout their lifecycle is made possible by IoT. In circular value chains, blockchain guarantees safe data sharing, traceability, and transparency. Together, these technologies promote patterns of recycling, consumption, and production that are sustainable. Businesses can thereby improve operational effectiveness, lessen their influence on the environment, and advance a closed-loop economy.

Threat:

Cybersecurity & data privacy concerns

Concerns about data breaches frequently make organisations hesitant to use digital platforms for resource tracking and sharing. Sensitive data, including supply chain information and proprietary designs, may be exposed due to insecure digital infrastructures. These hazards hinder cooperation throughout value chains and erode stakeholder trust. Adhering to many foreign data protection regulations adds complexity and costs. As a result, digital circular projects are slower to develop and have limited scalability.

Covid-19 Impact

The COVID-19 pandemic significantly accelerated the adoption of digital circular economy practices as businesses faced disruptions in global supply chains and resource availability. Lockdowns and social distancing measures drove a shift toward digital platforms, remote operations, and virtual marketplaces, encouraging reuse, repair, and sharing models. Industries increasingly leveraged technologies such as blockchain, AI, and IoT to track materials and optimize resource efficiency. The crisis also heightened awareness about sustainability and resilience, prompting policymakers and organizations to integrate circular strategies into long-term digital transformation initiatives for more robust, adaptable economies.

The large enterprises segment is expected to be the largest during the forecast period

The large enterprises segment is expected to account for the largest market share during the forecast period by leveraging advanced technologies to optimize resource efficiency and reduce waste at scale. These organizations invest heavily in digital platforms for tracking, recycling, and repurposing materials across complex supply chains. Their global operations encourage the adoption of circular practices in multiple regions and industries. Strategic collaborations and ESG commitments further drive innovation and compliance with circular economy goals. Additionally, their influence accelerates market transformation by setting industry benchmarks and encouraging smaller players to adopt sustainable models.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate by adopting smart manufacturing and sustainable design practices. Automakers increasingly use digital tools to track materials and enable recycling and reuse. Electric vehicle production encourages circularity through battery refurbishing and second-life applications. Digital platforms optimize vehicle lifecycle management, reducing waste and resource use. This shift supports sustainability goals while lowering costs and enhancing brand value.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to by adopting smart manufacturing and sustainable design practices. Automakers increasingly use digital tools to track materials and enable recycling and reuse. Electric vehicle production encourages circularity through battery refurbishing and second-life applications. Digital platforms optimize vehicle lifecycle management, reducing waste and resource use. This shift supports sustainability goals while lowering costs and enhancing brand value.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by corporate sustainability commitments, digital innovation, and mature waste management infrastructures. The United States and Canada are at the forefront of integrating AI, IoT, and cloud-based solutions to extend product lifecycles and enable closed-loop systems. Consumer demand for eco-conscious products and transparency further propels digital circular strategies. While regulatory push is moderate compared to Asia Pacific, voluntary ESG initiatives and public-private partnerships are central to advancing circular models across industries, especially in electronics, automotive, and retail sectors.

Key players in the market

Some of the key players profiled in the Digital Circular Economy Market include SAP, IBM, Microsoft, Google, Oracle, Capgemini, Accenture, Cisco, Siemens Advanta, Software AG, Landbell Group, KPMG, Anthesis Group, Veolia, Rheaply, Recykal, GreenMantra Technologies and CircularIQ.

Key Developments:

In May 2025, IBM signed an agreement with DECA Technologies to implement DECA's M Series and Adaptive Patterning semiconductor packaging tech at IBM's advanced packaging facility in Bromont, Quebec-boosting digital packaging innovation within semiconductor supply chains.

In June 2024, SAP acquired WalkMe for approximately $1.5 billion. The DAP enhances user adoption of purpose-built interfaces in complex environments such as circular economy use cases, improving user guidance and engagement in sustainability focused ERP solutions.

In April 2024, SAP extended its partnership with SIRC (PIF subsidiary), deploying SAP S/4HANA, Ariba, SuccessFactors, and Analytics Cloud. Signed an MoU to co build a digital roadmap enhancing environmental reporting, CRM modernization, and sustainability driven services.

In April 2024, IBM agreed to acquire HashiCorp (US $6.4 B), which provides infrastructure lifecycle automation. This supports circular economy digital platforms by enabling scalable infrastructure that adapts dynamically based on lifecycle and usage data.

Components Covered:

  • Solutions
  • Services

Deployment Modes Covered:

  • Cloud-Based
  • On-Premise

Organization Sizes Covered:

  • Large Enterprises
  • Small & Medium Enterprises (SMEs)

Business Models Covered:

  • Product-as-a-Service (PaaS)
  • Sharing Platforms
  • Resource Recovery
  • Circular Inputs
  • Product Life Extension
  • Other Business Models

Technologies Covered:

  • Blockchain
  • Artificial Intelligence (AI)
  • Internet of Things (IoT)
  • Big Data & Analytics
  • Cloud Computing
  • Digital Twin
  • 3D Printing
  • Other Technologies

End Users Covered:

  • Manufacturing
  • Retail & Consumer Goods
  • Automotive
  • Electronics & IT
  • Construction & Real Estate
  • Agriculture
  • Healthcare
  • Energy & Utilities
  • Textile & Fashion
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Digital Circular Economy Market, By Component

  • 5.1 Introduction
  • 5.2 Solutions
  • 5.3 Services

6 Global Digital Circular Economy Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 Cloud-Based
  • 6.3 On-Premise

7 Global Digital Circular Economy Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Large Enterprises
  • 7.3 Small & Medium Enterprises (SMEs)

8 Global Digital Circular Economy Market, By Business Model

  • 8.1 Introduction
  • 8.2 Product-as-a-Service (PaaS)
  • 8.3 Sharing Platforms
  • 8.4 Resource Recovery
  • 8.5 Circular Inputs
  • 8.6 Product Life Extension
  • 8.7 Other Business Models

9 Global Digital Circular Economy Market, By Technology

  • 9.1 Introduction
  • 9.2 Blockchain
  • 9.3 Artificial Intelligence (AI)
  • 9.4 Internet of Things (IoT)
  • 9.5 Big Data & Analytics
  • 9.6 Cloud Computing
  • 9.7 Digital Twin
  • 9.8 3D Printing
  • 9.9 Other Technologies

10 Global Digital Circular Economy Market, By End User

  • 10.1 Introduction
  • 10.2 Manufacturing
  • 10.3 Retail & Consumer Goods
  • 10.4 Automotive
  • 10.5 Electronics & IT
  • 10.6 Construction & Real Estate
  • 10.7 Agriculture
  • 10.8 Healthcare
  • 10.9 Energy & Utilities
  • 10.10 Textile & Fashion
  • 10.11 Other End Users

11 Global Digital Circular Economy Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 SAP
  • 13.2 IBM
  • 13.3 Microsoft
  • 13.4 Google
  • 13.5 Oracle
  • 13.6 Capgemini
  • 13.7 Accenture
  • 13.8 Cisco
  • 13.9 Siemens Advanta
  • 13.10 Software AG
  • 13.11 Landbell Group
  • 13.12 KPMG
  • 13.13 Anthesis Group
  • 13.14 Veolia
  • 13.15 Rheaply
  • 13.16 Recykal
  • 13.17 GreenMantra Technologies
  • 13.18 CircularIQ

List of Tables

  • Table 1 Global Digital Circular Economy Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Digital Circular Economy Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Digital Circular Economy Market Outlook, By Solutions (2024-2032) ($MN)
  • Table 4 Global Digital Circular Economy Market Outlook, By Services (2024-2032) ($MN)
  • Table 5 Global Digital Circular Economy Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 6 Global Digital Circular Economy Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 7 Global Digital Circular Economy Market Outlook, By On-Premise (2024-2032) ($MN)
  • Table 8 Global Digital Circular Economy Market Outlook, By Organization Size (2024-2032) ($MN)
  • Table 9 Global Digital Circular Economy Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 10 Global Digital Circular Economy Market Outlook, By Small & Medium Enterprises (SMEs) (2024-2032) ($MN)
  • Table 11 Global Digital Circular Economy Market Outlook, By Business Model (2024-2032) ($MN)
  • Table 12 Global Digital Circular Economy Market Outlook, By Product-as-a-Service (PaaS) (2024-2032) ($MN)
  • Table 13 Global Digital Circular Economy Market Outlook, By Sharing Platforms (2024-2032) ($MN)
  • Table 14 Global Digital Circular Economy Market Outlook, By Resource Recovery (2024-2032) ($MN)
  • Table 15 Global Digital Circular Economy Market Outlook, By Circular Inputs (2024-2032) ($MN)
  • Table 16 Global Digital Circular Economy Market Outlook, By Product Life Extension (2024-2032) ($MN)
  • Table 17 Global Digital Circular Economy Market Outlook, By Other Business Models (2024-2032) ($MN)
  • Table 18 Global Digital Circular Economy Market Outlook, By Technology (2024-2032) ($MN)
  • Table 19 Global Digital Circular Economy Market Outlook, By Blockchain (2024-2032) ($MN)
  • Table 20 Global Digital Circular Economy Market Outlook, By Artificial Intelligence (AI) (2024-2032) ($MN)
  • Table 21 Global Digital Circular Economy Market Outlook, By Internet of Things (IoT) (2024-2032) ($MN)
  • Table 22 Global Digital Circular Economy Market Outlook, By Big Data & Analytics (2024-2032) ($MN)
  • Table 23 Global Digital Circular Economy Market Outlook, By Cloud Computing (2024-2032) ($MN)
  • Table 24 Global Digital Circular Economy Market Outlook, By Digital Twin (2024-2032) ($MN)
  • Table 25 Global Digital Circular Economy Market Outlook, By 3D Printing (2024-2032) ($MN)
  • Table 26 Global Digital Circular Economy Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 27 Global Digital Circular Economy Market Outlook, By End User (2024-2032) ($MN)
  • Table 28 Global Digital Circular Economy Market Outlook, By Manufacturing (2024-2032) ($MN)
  • Table 29 Global Digital Circular Economy Market Outlook, By Retail & Consumer Goods (2024-2032) ($MN)
  • Table 30 Global Digital Circular Economy Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 31 Global Digital Circular Economy Market Outlook, By Electronics & IT (2024-2032) ($MN)
  • Table 32 Global Digital Circular Economy Market Outlook, By Construction & Real Estate (2024-2032) ($MN)
  • Table 33 Global Digital Circular Economy Market Outlook, By Agriculture (2024-2032) ($MN)
  • Table 34 Global Digital Circular Economy Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 35 Global Digital Circular Economy Market Outlook, By Energy & Utilities (2024-2032) ($MN)
  • Table 36 Global Digital Circular Economy Market Outlook, By Textile & Fashion (2024-2032) ($MN)
  • Table 37 Global Digital Circular Economy Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.