封面
市場調查報告書
商品編碼
1833548

2032 年可生物分解聚合物市場預測:按類型、形式、應用、最終用戶和地區進行的全球分析

Biodegradable Polymers Market Forecasts to 2032 - Global Analysis By Type, Form, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球可生物分解聚合物市場預計在 2025 年達到 116 億美元,到 2032 年將達到 458 億美元,預測期內的複合年成長率為 21.6%。

可生物分解聚合物是指能夠透過微生物活動自然分解,形成水、二氧化碳和生質能等環境友善產品的材料。它們源自於可再生資源或化學合成,廣泛應用於包裝、農業、醫療設備、消費品等領域。這些聚合物可取代傳統塑膠,減少長期污染。常見的例子包括聚乳酸 (PLA)、聚羥基烷酯(PHA) 和澱粉基聚合物。它們的分解速率取決於溫度、濕度和微生物的存在等環境條件。

據歐洲生質塑膠稱,可生物分解聚合物是傳統塑膠的環保替代品,可自然分解,支持包裝和農業領域的循環經濟目標。

塑膠污染意識

全球對塑膠污染日益成長的擔憂是可生物分解聚合物市場發展的關鍵驅動力。消費者對環境永續性的意識不斷增強,加上政府對一次性塑膠的嚴格監管,促使製造商和最終用戶採用環保替代品。這種向永續材料的轉變推動了包裝、農業和消費品領域對可生物分解聚合物的需求。公眾宣傳活動和環保倡導活動進一步推動了可生物分解聚合物的普及,從而形成了一個利潤豐厚的市場生態系統。

生產成本高

儘管生物分解聚合物具有環保優勢,但其高昂的生產成本仍是市場限制。其製造流程、原料採購和專門的聚合技術使其價格高於傳統塑膠。這一成本壁壘限制了其應用,尤其是在價格敏感地區和傳統塑膠具有經濟吸引力的行業。此外,在保持穩定品質的同時擴大生產規模也給供應商帶來了挑戰,這可能會減緩整體市場滲透率,並限制其在新興經濟體的快速商業化。

3D列印技術的進步

3D列印技術的進步為可生物分解聚合物市場創造了巨大的機會。利用PLA和其他可生物分解聚合物製造複雜客製化產品的能力,正在推動汽車、醫療保健和消費品領域應用的多樣化。生物基線材製造領域的創新正在減少材料浪費,並加快原型製作速度,從而創造對永續列印材料的需求。可生物分解聚合物與積層製造之間的技術協同效應預計將擴大市場應用,開闢新的收益來源,並支持全球環保產品的開發。

與傳統塑膠的競爭

傳統塑膠的持續主導地位對可生物分解聚合物市場構成了顯著威脅。成熟的供應鏈、較低的生產成本以及業界對傳統塑膠的廣泛熟悉,使得替代變得困難。儘管有環保法規,但出於成本和性能的考慮,各行業仍可能抵制替代方案。此外,消費者對可生物分解聚合物相對於傳統塑膠的性能有誤解,這可能會阻礙其採用。在這種競爭格局中,可生物分解聚合物製造商必須透過持續創新和相關人員宣導活動來降低替代風險。

COVID-19的影響:

傳統塑膠的持續主導地位對可生物分解聚合物市場構成了顯著威脅。成熟的供應鏈、較低的生產成本以及業內對傳統塑膠的廣泛了解,使得替代變得困難。儘管存在環保法規,但出於成本和性能的考慮,業界仍可能抵制替代方案。此外,消費者對可生物分解聚合物相對於傳統塑膠的性能有誤解,這可能會阻礙其採用。在這種競爭格局中,可生物分解聚合物製造商必須透過持續創新和相關人員宣導活動來降低替代風險。

預測期內,聚乳酸(PLA)市場預計將成為最大的市場

預計聚乳酸 (PLA) 將在預測期內佔據最大的市場佔有率。由於其可再生資源基礎、生物分解性以及在包裝、農業和消費品領域的多功能性,PLA 仍然是應用最廣泛的聚合物。它與射出成型和薄膜擠出等現有加工技術的兼容性進一步推動了需求。人們對永續替代品的認知不斷提高以及全球監管支持將繼續鞏固 PLA 的市場地位,確保其在不斷發展的可生物分解聚合物領域佔據最大佔有率。

預計在預測期內,電影業將以最高的複合年成長率成長。

受永續包裝解決方案需求成長的推動,薄膜領域預計將在預測期內實現最高成長率。可生物分解聚合物薄膜正日益取代食品包裝、農業覆蓋物和消費品領域的傳統塑膠薄膜。其在阻隔性、透明度和耐用性方面的創新正日益提升其吸引力。電子商務的興起、包裝法規的收緊以及消費者對環保材料的偏好進一步推動了市場發展,使可生物分解聚合物薄膜成為整個市場的關鍵驅動力。

比最大的地區

預計亞太地區將在預測期內佔據最大的市場佔有率,這得益於快速的工業化進程、包裝和消費品行業的擴張以及政府不斷推行的永續材料推廣舉措。中國和印度等國家由於人口密度高、環保意識增強以及在食品和農業領域採用可生物分解替代品,是主要的消費國。生產基礎設施的投資,加上優惠的政策和消費者對環保產品的偏好,進一步鞏固了該地區在全球可生物分解聚合物市場的主導地位。

複合年成長率最高的地區:

預計北美地區在預測期內將實現最高的複合年成長率,這得益於消費者對環境永續性的強烈意識以及對一次性塑膠的嚴格監管。可生物分解聚合物的技術創新,加上成熟的供應鏈和研發投入,正在推動市場應用。可生物分解包裝在電子商務、餐飲服務和醫療保健領域的廣泛應用,進一步推動了市場成長。製造商、政府和研究機構之間的合作將增強該地區在部署先進環保聚合物解決方案方面的領導地位。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 最終用戶分析
  • 應用分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球可生物分解聚合物市場(按類型)

  • 聚乳酸(PLA)
  • 聚羥基烷酯(PHA)
  • Polybutylene Succinate(PBS)
  • 澱粉基
  • 聚己內酯(PCL)
  • Polybutylene Adipate Terephthalate(PBAT)
  • 聚乙烯醇(PVA)

6. 全球生物分解聚合物市場(依形態)

  • 電影
  • 床單
  • 顆粒
  • 纖維
  • 塗層
  • 注射
  • 包裹

7. 全球生物分解聚合物市場(依應用)

  • 包裹
  • 農業
  • 醫療設備
  • 纖維
  • 消費品

8. 全球可生物分解聚合物市場(依最終用戶)

  • 飲食
  • 衛生保健
  • 電子產品
  • 消費品

9. 全球生物分解聚合物市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第11章 公司概況

  • BASF
  • NatureWorks
  • Novamont
  • TotalEnergies Corbion
  • Mitsubishi Chemical
  • Corbion
  • Polysciences
  • Danimer Scientific
  • FKuR Kunststoff
  • Evonik Industries
  • Biome Bioplastics 11.12 Green Dot Bioplastics
  • Metabolix
  • Novamont
  • Braskem
  • Mitsui Chemicals
  • NatureWorks LLC
Product Code: SMRC31381

According to Stratistics MRC, the Global Biodegradable Polymers Market is accounted for $11.6 billion in 2025 and is expected to reach $45.8 billion by 2032 growing at a CAGR of 21.6% during the forecast period. Biodegradable polymers are materials that break down naturally through microbial activity, forming environmentally benign byproducts like water, carbon dioxide, and biomass. Derived from renewable resources or synthesized chemically, they are used in packaging, agriculture, medical devices, and consumer goods. These polymers offer an alternative to conventional plastics, reducing long-term pollution. Common types include polylactic acid (PLA), polyhydroxyalkanoates (PHA), and starch-based polymers. Their decomposition rate depends on environmental conditions such as temperature, moisture, and microbial presence.

According to European Bioplastics, biodegradable polymers offer eco-friendly alternatives to conventional plastics, decomposing naturally and supporting circular economy goals in packaging and agriculture.

Market Dynamics:

Driver:

Plastic pollution awareness

The growing global concern regarding plastic pollution has emerged as a significant driver for the biodegradable polymers market. Heightened consumer awareness about environmental sustainability, coupled with stringent government regulations on single-use plastics, has encouraged manufacturers and end-users to adopt eco-friendly alternatives. This shift towards sustainable materials is propelling the demand for biodegradable polymers in packaging, agriculture, and consumer goods. Public campaigns and environmental advocacy initiatives further reinforce the adoption of biodegradable polymers, creating a favorable market ecosystem.

Restraint:

High production cost

Despite environmental advantages, the high production cost of biodegradable polymers remains a key market restraint. Manufacturing processes, raw material sourcing, and specialized polymerization technologies contribute to elevated prices compared to conventional plastics. This cost barrier limits adoption, particularly in price-sensitive regions and industries where conventional plastics remain economically attractive. Moreover, scaling production while maintaining consistent quality poses challenges for suppliers, potentially slowing overall market penetration and restricting rapid commercialization in emerging economies.

Opportunity:

Technological advancement in 3D printing

Advancements in 3D printing technology offer significant opportunities for the biodegradable polymers market. The ability to create intricate, customized products with PLA and other biodegradable polymers enhances application versatility across automotive, healthcare, and consumer goods sectors. Emerging innovations in bio-based filament production reduce material waste and enable faster prototyping, creating demand for sustainable printing materials. This technological synergy between biodegradable polymers and additive manufacturing is expected to expand market applications, opening new revenue streams and supporting eco-conscious product development globally.

Threat:

Conventional plastic competition

The continued dominance of conventional plastics represents a notable threat to the biodegradable polymers market. Established supply chains, lower production costs, and widespread industrial familiarity with traditional plastics make substitution challenging. Despite environmental regulations, industries may resist switching due to cost and performance concerns. Additionally, consumer misconceptions about the performance of biodegradable polymers relative to conventional plastics could hinder adoption. This competitive landscape requires biodegradable polymer manufacturers to continuously innovate and educate stakeholders to mitigate substitution risks.

Covid-19 Impact:

The continued dominance of conventional plastics represents a notable threat to the biodegradable polymers market. Established supply chains, lower production costs, and widespread industrial familiarity with traditional plastics make substitution challenging. Despite environmental regulations, industries may resist switching due to cost and performance concerns. Additionally, consumer misconceptions about the performance of biodegradable polymers relative to conventional plastics could hinder adoption. This competitive landscape requires biodegradable polymer manufacturers to continuously innovate and educate stakeholders to mitigate substitution risks.

The polylactic acid (PLA) segment is expected to be the largest during the forecast period

The polylactic acid (PLA) segment is expected to account for the largest market share during the forecast period Propelled by its renewable resource base, biodegradability, and versatility across packaging, agriculture, and consumer products, PLA remains the most widely adopted polymer. Its compatibility with existing processing technologies, such as injection molding and film extrusion, further enhances demand. Growing awareness of sustainable alternatives and regulatory support globally continues to strengthen PLA's market position, securing the largest share in the evolving biodegradable polymers landscape.

The film segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the film segment is predicted to witness the highest growth rate, influenced by rising demand for sustainable packaging solutions. Biodegradable polymer films are increasingly adopted in food packaging, agricultural mulch, and consumer goods, replacing conventional plastic films. Innovations in barrier properties, transparency, and durability enhance their appeal. Market growth is further fueled by expanding e-commerce, stricter packaging regulations, and growing consumer preference for eco-friendly materials, positioning biodegradable polymer films as a key growth driver in the overall market.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by rapid industrialization, expanding packaging and consumer goods sectors, and increasing government initiatives promoting sustainable materials. Countries like China and India are major consumers due to high population density, rising environmental awareness, and adoption of biodegradable alternatives in food and agriculture. Investments in production infrastructure, coupled with favorable policies and consumer preference for eco-friendly products, further strengthen the region's dominance in the global biodegradable polymers market.

Region with highest CAGR:

Over the forecast period, North America is anticipated to exhibit the highest CAGR, driven by strong consumer awareness of environmental sustainability and stringent regulations on single-use plastics. Technological innovation in biodegradable polymers, coupled with well-established supply chains and research investments, enhances market adoption. Growth is further accelerated by the widespread use of biodegradable packaging in e-commerce, foodservice, and healthcare sectors. Collaborative initiatives among manufacturers, governments, and research institutions reinforce regional leadership in deploying advanced and eco-conscious polymer solutions.

Key players in the market

Some of the key players in Biodegradable Polymers Market include BASF, NatureWorks, Novamont, TotalEnergies Corbion, Mitsubishi Chemical, Corbion, Polysciences, Danimer Scientific, FKuR Kunststoff, Evonik Industries, Biome Bioplastics, Green Dot Bioplastics, Metabolix, Braskem, Mitsui Chemicals, and NatureWorks LLC.

Key Developments:

In August 2025, DuPont launched a high-durability anti-fog coating for industrial lenses, enhancing visibility and safety in extreme humidity and temperature environments.

In August 2025, Nippon Sheet Glass developed a UV-blocking coating for architectural lenses, improving indoor light quality and protecting occupants from harmful radiation.

In July 2025, PPG Industries introduced a solar-reflective lens coating for automotive applications, reducing cabin heat and improving energy efficiency in electric vehicles.

In June 2025, ZEISS International unveiled a multi-layer optical coating for surgical lenses, offering enhanced clarity and reduced glare during precision medical procedures.

Types Covered:

  • Polylactic Acid (PLA)
  • Polyhydroxyalkanoates (PHA)
  • Polybutylene Succinate (PBS)
  • Starch-Based
  • Polycaprolactone (PCL)
  • Polybutylene Adipate Terephthalate (PBAT)
  • Polyvinyl Alcohol (PVA)

Forms Covered:

  • Film
  • Sheet
  • Granules
  • Fibers
  • Coatings
  • Injectables
  • Packaging

Applications Covered:

  • Packaging
  • Agriculture
  • Medical Devices
  • Textiles
  • Consumer Goods

End Users Covered:

  • Food & Beverage
  • Healthcare
  • Automotive
  • Electronics
  • Consumer Goods

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biodegradable Polymers Market, By Type

  • 5.1 Introduction
  • 5.2 Polylactic Acid (PLA)
  • 5.3 Polyhydroxyalkanoates (PHA)
  • 5.4 Polybutylene Succinate (PBS)
  • 5.5 Starch-Based
  • 5.6 Polycaprolactone (PCL)
  • 5.7 Polybutylene Adipate Terephthalate (PBAT)
  • 5.8 Polyvinyl Alcohol (PVA)

6 Global Biodegradable Polymers Market, By Form

  • 6.1 Introduction
  • 6.2 Film
  • 6.3 Sheet
  • 6.4 Granules
  • 6.5 Fibers
  • 6.6 Coatings
  • 6.7 Injectables
  • 6.8 Packaging

7 Global Biodegradable Polymers Market, By Application

  • 7.1 Introduction
  • 7.2 Packaging
  • 7.3 Agriculture
  • 7.4 Medical Devices
  • 7.5 Textiles
  • 7.6 Consumer Goods

8 Global Biodegradable Polymers Market, By End User

  • 8.1 Introduction
  • 8.2 Food & Beverage
  • 8.3 Healthcare
  • 8.4 Automotive
  • 8.5 Electronics
  • 8.6 Consumer Goods

9 Global Biodegradable Polymers Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 BASF
  • 11.2 NatureWorks
  • 11.3 Novamont
  • 11.4 TotalEnergies Corbion
  • 11.5 Mitsubishi Chemical
  • 11.6 Corbion
  • 11.7 Polysciences
  • 11.8 Danimer Scientific
  • 11.9 FKuR Kunststoff
  • 11.10 Evonik Industries
  • 11.11 Biome Bioplastics 11.12 Green Dot Bioplastics
  • 11.13 Metabolix
  • 11.14 Novamont
  • 11.15 Braskem
  • 11.16 Mitsui Chemicals
  • 11.17 NatureWorks LLC

List of Tables

  • Table 1 Global Biodegradable Polymers Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Biodegradable Polymers Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Biodegradable Polymers Market Outlook, By Polylactic Acid (PLA) (2024-2032) ($MN)
  • Table 4 Global Biodegradable Polymers Market Outlook, By Polyhydroxyalkanoates (PHA) (2024-2032) ($MN)
  • Table 5 Global Biodegradable Polymers Market Outlook, By Polybutylene Succinate (PBS) (2024-2032) ($MN)
  • Table 6 Global Biodegradable Polymers Market Outlook, By Starch-Based (2024-2032) ($MN)
  • Table 7 Global Biodegradable Polymers Market Outlook, By Polycaprolactone (PCL) (2024-2032) ($MN)
  • Table 8 Global Biodegradable Polymers Market Outlook, By Polybutylene Adipate Terephthalate (PBAT) (2024-2032) ($MN)
  • Table 9 Global Biodegradable Polymers Market Outlook, By Polyvinyl Alcohol (PVA) (2024-2032) ($MN)
  • Table 10 Global Biodegradable Polymers Market Outlook, By Form (2024-2032) ($MN)
  • Table 11 Global Biodegradable Polymers Market Outlook, By Film (2024-2032) ($MN)
  • Table 12 Global Biodegradable Polymers Market Outlook, By Sheet (2024-2032) ($MN)
  • Table 13 Global Biodegradable Polymers Market Outlook, By Granules (2024-2032) ($MN)
  • Table 14 Global Biodegradable Polymers Market Outlook, By Fibers (2024-2032) ($MN)
  • Table 15 Global Biodegradable Polymers Market Outlook, By Coatings (2024-2032) ($MN)
  • Table 16 Global Biodegradable Polymers Market Outlook, By Injectables (2024-2032) ($MN)
  • Table 17 Global Biodegradable Polymers Market Outlook, By Packaging (2024-2032) ($MN)
  • Table 18 Global Biodegradable Polymers Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Biodegradable Polymers Market Outlook, By Packaging (2024-2032) ($MN)
  • Table 20 Global Biodegradable Polymers Market Outlook, By Agriculture (2024-2032) ($MN)
  • Table 21 Global Biodegradable Polymers Market Outlook, By Medical Devices (2024-2032) ($MN)
  • Table 22 Global Biodegradable Polymers Market Outlook, By Textiles (2024-2032) ($MN)
  • Table 23 Global Biodegradable Polymers Market Outlook, By Consumer Goods (2024-2032) ($MN)
  • Table 24 Global Biodegradable Polymers Market Outlook, By End User (2024-2032) ($MN)
  • Table 25 Global Biodegradable Polymers Market Outlook, By Food & Beverage (2024-2032) ($MN)
  • Table 26 Global Biodegradable Polymers Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 27 Global Biodegradable Polymers Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 28 Global Biodegradable Polymers Market Outlook, By Electronics (2024-2032) ($MN)
  • Table 29 Global Biodegradable Polymers Market Outlook, By Consumer Goods (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above