封面
市場調查報告書
商品編碼
1813375

2032年高熵合金市場預測:按類型、合金類型、特性、製造方法、最終用戶和地區進行的全球分析

High-Entropy Alloys Market Forecasts to 2032 - Global Analysis By Type, Type of Alloy, Properties, Manufacturing Method, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球高熵合金市場預計在 2025 年達到 13.2 億美元,到 2032 年將達到 25.9 億美元,預測期內的複合年成長率為 10.1%。

高熵合金 (HEA) 是一類含有五種或五種以上原子比接近相等的主要元素的金屬材料,從而具有較高的構型熵。與主要由一兩種基底金屬組成的傳統合金不同,HEA 能夠形成具有獨特微觀結構的穩定固溶體。這種成分的複雜性賦予了它們卓越的機械強度、熱穩定性和耐腐蝕性。 HEA 因其在極端環境下的卓越性能以及客製化多功能特性的潛力,在航太、能源和國防領域的應用日益廣泛。

根據《材料化學雜誌》的一項研究,與傳統的貴金屬催化劑相比,鋅-空氣電池中使用的高熵合金 (HEA) 可將觸媒活性提高 35%,循環穩定性提高 40%。

高性能產業對積層製造的需求不斷成長

隨著各行各業對輕量化、耐用解決方案的追求,HEA 因其透過 3D 列印技術實現客製化的潛力而日益受到青睞。此外,它們與粉末冶金和雷射燒結製程的兼容性也加速了其融入先進製造流程的進程。這些材料具有卓越的機械強度、熱穩定性和耐磨性,使其成為製造在惡劣條件下工作的零件的理想選擇。隨著性能驅動型產業持續重視材料創新,這一趨勢預計將進一步加強。

原料供應有限

鉭、鈮和鉿等高純度原料的供應常常受到地緣政治因素和供應鏈瓶頸的限制。此外,複雜的合金製程需要精確控制成分和加工條件,從而限制了擴充性。這些因素增加了生產成本,並阻礙了其大規模商業化,尤其是在價格敏感的市場。製造商正在積極探索替代成分和回收策略,以緩解這些限制。

根據特定應用自訂屬性

高熵合金最引人注目的優勢之一在於其可調式特性。透過調整元素比例和加工工藝,研究人員可以增強其耐腐蝕性、熱導率和磁性等性能。設計具有客製化微觀結構的合金的能力正在推動材料科學的創新,並促進學術界和工業界研發團隊之間的合作。隨著客製化變得越來越可行,高熵合金有望滲透到需要特殊性能的新領域。

智慧財產權和專利問題

專利重疊、專有成分和許可糾紛會延遲商業化進程並增加法律成本。此外,高熵合金缺乏標準化的分類和測試通訊協定,使得監管核准和市場准入變得複雜。隨著越來越多的公司投資專有合金系統,知識產權領域變得越來越複雜。公司必須採用強力的專利策略並簽訂交叉授權合約,以保護其創新並避免侵權問題。

COVID-19的影響:

新冠疫情最初擾亂了高熵合金市場,導致研究活動暫停、中試生產延遲,並影響了全球供應鏈。然而,這場危機也凸顯了高彈性材料在關鍵基礎設施和醫療保健應用中的重要性。隨著業界重新調整重點,高熵合金因其在醫療設備、防護塗層和高溫零件領域的潛力而備受關注。數位化製造和遠端協作的轉變加速了合金設計模擬工具的普及。

預測期內,耐火高熵合金(RHEA)市場預計將成為最大的市場

預計在預測期內,耐火高熵合金 (RHEA) 領域將佔據最大的市場佔有率,這得益於其在極端環境下,尤其是在航太和國防應用領域的卓越性能。這些合金包含鎢、鉬和釩等元素,具有卓越的耐高溫和抗機械應力性能。它們在熱循環和氧化條件下的穩定性使其成為渦輪葉片、火箭噴嘴和核能部件的理想選擇。正在進行的相穩定性和抗蠕變性研究進一步增強了它們的吸引力。

預測期內,耐腐蝕和抗氧化領域預計將以最高的複合年成長率成長

預計耐腐蝕和抗氧化合金領域在預測期內將實現最高成長率,因為其適用於嚴苛的化學和海洋環境。由於其耐腐蝕性介質的能力,這類合金擴大用於海洋結構、化學反應器和燃料電池組件。合金表面處理和鈍化製程的創新正在延長其使用壽命並降低維護成本。該領域也受益於日益增多的環境法規,這些法規要求使用耐用且無毒的材料。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率,這得益於其強勁的國防開支、先進的製造業基礎設施以及強大的學術和研究網路。該地區擁有多家主要企業和研究機構,它們正在積極開發新型合金系統並擴大生產能力。政府推動材料創新和國防技術戰略自力更生的舉措,進一步推動了市場成長。

複合年成長率最高的地區:

預計亞太地區在預測期內的複合年成長率最高,這得益於工業化進程的加速、研發投入的增加以及政府扶持政策的訂定。中國、日本和韓國等國家在合金開發方面取得了顯著進展,並專注於成本效益型製造和出口導向生產。該地區在電子、交通運輸和可再生能源領域對高性能材料的需求日益成長,為高熵合金的應用創造了肥沃的土壤。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球高熵合金市場(按類型)

  • 5基底金屬
  • 五種或更多基底金屬
  • 難熔高熵合金(RHEA)
  • 輕質高熵合金(LHEA)
  • 3D過渡金屬高熵合金(HEA)
  • 其他類型

6. 全球高熵合金市場(依合金類型)

  • 鈷基高熵合金
  • 鎳基HEA
  • 鐵基HEA
  • 鋁基HEA
  • 耐火HEA
  • 其他合金類型

7. 全球高熵合金市場(依屬性)

  • 優異的機械性質
  • 熱穩定性
  • 耐腐蝕和氧化
  • 磁性
  • 電氣特性
  • 抗輻射
  • 生物相容性
  • 其他特性

8. 全球高熵合金市場(依生產方法)

  • 鑄造和凝固
  • 粉末冶金
  • 積層製造
  • 薄膜沉積
  • 其他製造方法

9. 全球高熵合金市場(按應用)

  • 高溫結構件
  • 輕量化結構件
  • 耐磨塗層
  • 耐腐蝕塗料
  • 隔熱塗層
  • 低溫和輻射密集應用
  • 其他用途

第 10 章全球高熵合金市場(依最終用戶)

  • 航太/國防
  • 汽車和運輸
  • 能源和電力
  • 工業設備
  • 電子和半導體
  • 醫療保健
  • 研究與學術
  • 其他最終用戶

第11章全球高熵合金市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章:企業概況

  • QuesTek Innovations LLC
  • Sandvik AB
  • Carpenter Technology Corporation
  • Allegheny Technologies Incorporated(ATI)
  • Oerlikon Management AG
  • Hitachi, Ltd.
  • VDM Metals GmbH
  • Heraeus Holding GmbH
  • Aperam SA
  • Heeger Materials Inc.
  • Stanford Advanced Materials
  • American Elements
  • 6K Inc.
  • CRS Holdings, LLC.
  • Plansee SE
  • Nippon Yakin Kogyo Co., Ltd.
  • Advanced Technology & Materials Co., Ltd
Product Code: SMRC30822

According to Stratistics MRC, the Global High-Entropy Alloys Market is accounted for $1.32 billion in 2025 and is expected to reach $2.59 billion by 2032 growing at a CAGR of 10.1% during the forecast period. High-entropy alloys (HEAs) are a class of metallic materials composed of five or more principal elements in near-equiatomic ratios, resulting in high configurational entropy. Unlike conventional alloys dominated by one or two base metals, HEAs form stable solid solutions with unique microstructures. This compositional complexity imparts exceptional mechanical strength, thermal stability, and corrosion resistance. HEAs are increasingly used in aerospace, energy, and defense sectors due to their superior performance in extreme environments and potential for tailored multifunctional properties

According to Journal of Materials Chemistry reports that high-entropy alloys (HEAs) used in zinc-air batteries demonstrated a 35% increase in electrocatalytic activity and 40% improvement in cycling stability compared to conventional noble metal catalysts.

Market Dynamics:

Driver:

Growing demand from high-performance industries for additive manufacturing

As industries seek lightweight yet durable solutions, HEAs are gaining traction due to their ability to be customized through 3D printing technologies. Moreover, the compatibility of HEAs with powder metallurgy and laser sintering processes is accelerating their integration into advanced manufacturing workflows. These materials offer exceptional mechanical strength, thermal stability, and wear resistance, making them ideal for components exposed to extreme conditions. This trend is expected to intensify as performance-driven sectors continue to prioritize material innovation.

Restraint:

Limited availability of raw materials

The procurement of high-purity feedstock materials such as tantalum, niobium, and hafnium is often constrained by geopolitical factors and supply chain bottlenecks. Additionally, the complex alloying process requires precise control over composition and processing conditions, which limits scalability. These factors contribute to elevated production costs and hinder widespread commercialization, especially in price-sensitive markets. Manufacturers are actively exploring alternative compositions and recycling strategies to mitigate these limitations.

Opportunity:

Tailoring properties for specific applications

One of the most compelling advantages of HEAs lies in their tunable properties, which can be engineered to meet specific application requirements. By adjusting elemental ratios and processing techniques, researchers can enhance characteristics such as corrosion resistance, thermal conductivity, and magnetic behavior. The ability to design alloys with tailored microstructures is driving innovation in material science, encouraging collaborations between academic institutions and industrial R&D teams. As customization becomes more feasible, HEAs are poised to penetrate new verticals with specialized performance needs.

Threat:

Intellectual property and patent challenges

Patent overlaps, proprietary compositions, and licensing disputes can delay commercialization and increase legal costs. Furthermore, the lack of standardized classification and testing protocols for HEAs complicates regulatory approval and market entry. As more entities invest in proprietary alloy systems, navigating the IP terrain becomes increasingly complex. Companies must adopt robust patent strategies and engage in cross-licensing agreements to safeguard their innovations and avoid infringement issues.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the HEA market by halting research activities, delaying pilot-scale production, and affecting global supply chains. However, the crisis also underscored the importance of resilient materials in critical infrastructure and healthcare applications. As industries recalibrated their priorities, HEAs gained attention for their potential in medical devices, protective coatings, and high-temperature components. The shift toward digital manufacturing and remote collaboration accelerated the adoption of simulation tools for alloy design.

The refractory high-entropy alloys (RHEAs) segment is expected to be the largest during the forecast period

The refractory high-entropy alloys (RHEAs) segment is expected to account for the largest market share during the forecast period due to their superior performance in extreme environments, particularly in aerospace and defense applications. These alloys incorporate elements like tungsten, molybdenum, and vanadium, offering exceptional resistance to high temperatures and mechanical stress. Their stability under thermal cycling and oxidative conditions makes them ideal for turbine blades, rocket nozzles, and nuclear components. Ongoing research into phase stability and creep resistance is further enhancing their appeal.

The corrosion & oxidation resistance segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the corrosion & oxidation resistance segment is predicted to witness the highest growth rate driven by its applicability in harsh chemical and marine environments. These alloys are being increasingly used in offshore structures, chemical reactors, and fuel cell components due to their ability to withstand aggressive media. Innovations in surface treatment and alloy passivation are improving their longevity and reducing maintenance costs. The segment is also benefiting from rising environmental regulations that mandate the use of durable, non-toxic materials.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to robust defense spending, advanced manufacturing infrastructure, and strong academic research networks. The region hosts several key players and research institutions actively developing novel alloy systems and scaling up production capabilities. Government initiatives promoting material innovation and strategic autonomy in defense technologies are further propelling market growth.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by expanding industrialization, rising R&D investments, and supportive government policies. Countries like China, Japan, and South Korea are making significant strides in alloy development, with a focus on cost-effective manufacturing and export-oriented production. The region's growing demand for high-performance materials in electronics, transportation, and renewable energy sectors is creating fertile ground for HEA adoption.

Key players in the market

Some of the key players in High-Entropy Alloys Market include QuesTek Innovations LLC, Sandvik AB, Carpenter Technology Corporation, Allegheny Technologies Incorporated (ATI), Oerlikon Management AG, Hitachi, Ltd., VDM Metals GmbH, Heraeus Holding GmbH, Aperam S.A., Heeger Materials Inc., Stanford Advanced Materials, American Elements, 6K Inc., CRS Holdings, LLC., Plansee SE, Nippon Yakin Kogyo Co., Ltd., and Advanced Technology & Materials Co., Ltd.

Key Developments:

In July 2025, VDM Metals announced readiness to receive tungsten concentrates from the Sangdong mine in South Korea. This secures long-term raw material supply and strengthens its position as a leading Western tungsten supplier.

In March 2025, Altaeros launched the ST-400 autonomous aerostat capable of lifting 900+ lbs to 2,500 ft. It supports multi-mission payloads including radar, EO/IR, and cUAS systems with full autopilot control.

In March 2025, Ingersoll Rand acquired ILC Dover for $2.325 billion to expand its life sciences portfolio. The deal includes strategic earnouts and integrates Dover's containment solutions into IR's Precision & Science Technologies segment.

Types Covered:

  • 5 Base Metals
  • Above 5 Base Metals
  • Refractory High-Entropy Alloys (RHEAs)
  • Lightweight High-Entropy Alloys (LHEAs)
  • 3D Transition Metal High-Entropy Alloys (HEAs)
  • Other Types

Type of Alloys Covered:

  • Cobalt-Based HEAs
  • Nickel-Based HEAs
  • Iron-Based HEAs
  • Aluminum-Based HEAs
  • Refractory HEAs
  • Other Type of Alloys

Properties Covered:

  • Superior Mechanical Properties
  • Thermal Stability
  • Corrosion & Oxidation Resistance
  • Magnetic Properties
  • Electrical Properties
  • Radiation Resistance
  • Biocompatibility
  • Other Properties

Manufacturing Methods Covered:

  • Casting & Solidification
  • Powder Metallurgy
  • Additive Manufacturing
  • Thin Film Deposition
  • Other Manufacturing Methods

Applications Covered:

  • High-temperature Structural Components
  • Lightweight Structural Components
  • Wear-resistant Coatings
  • Corrosion-resistant Coatings
  • Thermal Barrier Coatings
  • Cryogenic & Radiation-intensive Applications
  • Other Applications

End Users Covered:

  • Aerospace & Defense
  • Automotive & Transportation
  • Energy & Power
  • Industrial Equipment
  • Electronics & Semiconductors
  • Medical & Healthcare
  • Research & Academia
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global High-Entropy Alloys Market, By Type

  • 5.1 Introduction
  • 5.2 5 Base Metals
  • 5.3 Above 5 Base Metals
  • 5.4 Refractory High-Entropy Alloys (RHEAs)
  • 5.5 Lightweight High-Entropy Alloys (LHEAs)
  • 5.6 3D Transition Metal High-Entropy Alloys (HEAs)
  • 5.7 Other Types

6 Global High-Entropy Alloys Market, By Type of Alloy

  • 6.1 Introduction
  • 6.2 Cobalt-Based HEAs
  • 6.3 Nickel-Based HEAs
  • 6.4 Iron-Based HEAs
  • 6.5 Aluminum-Based HEAs
  • 6.6 Refractory HEAs
  • 6.7 Other Type of Alloys

7 Global High-Entropy Alloys Market, By Properties

  • 7.1 Introduction
  • 7.2 Superior Mechanical Properties
  • 7.3 Thermal Stability
  • 7.4 Corrosion & Oxidation Resistance
  • 7.5 Magnetic Properties
  • 7.6 Electrical Properties
  • 7.7 Radiation Resistance
  • 7.8 Biocompatibility
  • 7.9 Other Properties

8 Global High-Entropy Alloys Market, By Manufacturing Method

  • 8.1 Introduction
  • 8.2 Casting & Solidification
  • 8.3 Powder Metallurgy
  • 8.4 Additive Manufacturing
  • 8.5 Thin Film Deposition
  • 8.6 Other Manufacturing Methods

9 Global High-Entropy Alloys Market, By Application

  • 9.1 Introduction
  • 9.2 High-temperature Structural Components
  • 9.3 Lightweight Structural Components
  • 9.4 Wear-resistant Coatings
  • 9.5 Corrosion-resistant Coatings
  • 9.6 Thermal Barrier Coatings
  • 9.7 Cryogenic & Radiation-intensive Applications
  • 9.8 Other Applications

10 Global High-Entropy Alloys Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace & Defense
  • 10.3 Automotive & Transportation
  • 10.4 Energy & Power
  • 10.5 Industrial Equipment
  • 10.6 Electronics & Semiconductors
  • 10.7 Medical & Healthcare
  • 10.8 Research & Academia
  • 10.9 Other End Users

11 Global High-Entropy Alloys Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 QuesTek Innovations LLC
  • 13.2 Sandvik AB
  • 13.3 Carpenter Technology Corporation
  • 13.4 Allegheny Technologies Incorporated (ATI)
  • 13.5 Oerlikon Management AG
  • 13.6 Hitachi, Ltd.
  • 13.7 VDM Metals GmbH
  • 13.8 Heraeus Holding GmbH
  • 13.9 Aperam S.A.
  • 13.10 Heeger Materials Inc.
  • 13.11 Stanford Advanced Materials
  • 13.12 American Elements
  • 13.13 6K Inc.
  • 13.14 CRS Holdings, LLC.
  • 13.15 Plansee SE
  • 13.16 Nippon Yakin Kogyo Co., Ltd.
  • 13.17 Advanced Technology & Materials Co., Ltd

List of Tables

  • Table 1 Global High-Entropy Alloys Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global High-Entropy Alloys Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global High-Entropy Alloys Market Outlook, By 5 Base Metals (2024-2032) ($MN)
  • Table 4 Global High-Entropy Alloys Market Outlook, By Above 5 Base Metals (2024-2032) ($MN)
  • Table 5 Global High-Entropy Alloys Market Outlook, By Refractory High-Entropy Alloys (RHEAs) (2024-2032) ($MN)
  • Table 6 Global High-Entropy Alloys Market Outlook, By Lightweight High-Entropy Alloys (LHEAs) (2024-2032) ($MN)
  • Table 7 Global High-Entropy Alloys Market Outlook, By 3D Transition Metal High-Entropy Alloys (HEAs) (2024-2032) ($MN)
  • Table 8 Global High-Entropy Alloys Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 9 Global High-Entropy Alloys Market Outlook, By Type of Alloy (2024-2032) ($MN)
  • Table 10 Global High-Entropy Alloys Market Outlook, By Cobalt-Based HEAs (2024-2032) ($MN)
  • Table 11 Global High-Entropy Alloys Market Outlook, By Nickel-Based HEAs (2024-2032) ($MN)
  • Table 12 Global High-Entropy Alloys Market Outlook, By Iron-Based HEAs (2024-2032) ($MN)
  • Table 13 Global High-Entropy Alloys Market Outlook, By Aluminum-Based HEAs (2024-2032) ($MN)
  • Table 14 Global High-Entropy Alloys Market Outlook, By Refractory HEAs (2024-2032) ($MN)
  • Table 15 Global High-Entropy Alloys Market Outlook, By Other Type of Alloys (2024-2032) ($MN)
  • Table 16 Global High-Entropy Alloys Market Outlook, By Properties (2024-2032) ($MN)
  • Table 17 Global High-Entropy Alloys Market Outlook, By Superior Mechanical Properties (2024-2032) ($MN)
  • Table 18 Global High-Entropy Alloys Market Outlook, By Thermal Stability (2024-2032) ($MN)
  • Table 19 Global High-Entropy Alloys Market Outlook, By Corrosion & Oxidation Resistance (2024-2032) ($MN)
  • Table 20 Global High-Entropy Alloys Market Outlook, By Magnetic Properties (2024-2032) ($MN)
  • Table 21 Global High-Entropy Alloys Market Outlook, By Electrical Properties (2024-2032) ($MN)
  • Table 22 Global High-Entropy Alloys Market Outlook, By Radiation Resistance (2024-2032) ($MN)
  • Table 23 Global High-Entropy Alloys Market Outlook, By Biocompatibility (2024-2032) ($MN)
  • Table 24 Global High-Entropy Alloys Market Outlook, By Other Properties (2024-2032) ($MN)
  • Table 25 Global High-Entropy Alloys Market Outlook, By Manufacturing Method (2024-2032) ($MN)
  • Table 26 Global High-Entropy Alloys Market Outlook, By Casting & Solidification (2024-2032) ($MN)
  • Table 27 Global High-Entropy Alloys Market Outlook, By Powder Metallurgy (2024-2032) ($MN)
  • Table 28 Global High-Entropy Alloys Market Outlook, By Additive Manufacturing (2024-2032) ($MN)
  • Table 29 Global High-Entropy Alloys Market Outlook, By Thin Film Deposition (2024-2032) ($MN)
  • Table 30 Global High-Entropy Alloys Market Outlook, By Other Manufacturing Methods (2024-2032) ($MN)
  • Table 31 Global High-Entropy Alloys Market Outlook, By Application (2024-2032) ($MN)
  • Table 32 Global High-Entropy Alloys Market Outlook, By High-temperature Structural Components (2024-2032) ($MN)
  • Table 33 Global High-Entropy Alloys Market Outlook, By Lightweight Structural Components (2024-2032) ($MN)
  • Table 34 Global High-Entropy Alloys Market Outlook, By Wear-resistant Coatings (2024-2032) ($MN)
  • Table 35 Global High-Entropy Alloys Market Outlook, By Corrosion-resistant Coatings (2024-2032) ($MN)
  • Table 36 Global High-Entropy Alloys Market Outlook, By Thermal Barrier Coatings (2024-2032) ($MN)
  • Table 37 Global High-Entropy Alloys Market Outlook, By Cryogenic & Radiation-intensive Applications (2024-2032) ($MN)
  • Table 38 Global High-Entropy Alloys Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 39 Global High-Entropy Alloys Market Outlook, By End User (2024-2032) ($MN)
  • Table 40 Global High-Entropy Alloys Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 41 Global High-Entropy Alloys Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 42 Global High-Entropy Alloys Market Outlook, By Energy & Power (2024-2032) ($MN)
  • Table 43 Global High-Entropy Alloys Market Outlook, By Industrial Equipment (2024-2032) ($MN)
  • Table 44 Global High-Entropy Alloys Market Outlook, By Electronics & Semiconductors (2024-2032) ($MN)
  • Table 45 Global High-Entropy Alloys Market Outlook, By Medical & Healthcare (2024-2032) ($MN)
  • Table 46 Global High-Entropy Alloys Market Outlook, By Research & Academia (2024-2032) ($MN)
  • Table 47 Global High-Entropy Alloys Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.