封面
市場調查報告書
商品編碼
1766271

高熵合金市場機會、成長動力、產業趨勢分析及2025-2034年預測

High Entropy Alloy Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024年,全球高熵合金市場規模達12億美元,預估年複合成長率為7.3%,2034年將達24億美元。這類合金由五種或五種以上主要元素以近乎等比例混合而成,具有獨特的機械強度、耐腐蝕性和熱穩定性。它們日益普及源於其性能優勢,優於傳統合金,尤其是在需要耐磨、耐熱和結構疲勞性能的環境中。隨著製造商不斷探索提高材料耐久性、減輕重量和延長零件使用壽命的方法,高熵合金在多個行業中的應用日益廣泛。研發投入的激增也推動了高熵合金在各領域的應用。

高熵合金市場 - IMG1

隨著各行各業優先考慮能源效率和長期性能,開發更輕、更堅固、更耐高溫的材料至關重要。因此,高熵合金正迅速成為下一代零件製造的關鍵材料,而先進的材料性能是不可或缺的。這些材料在傳統和新興應用中都展現出巨大的潛力,涵蓋從移動出行系統、重型基礎設施到高能耗設備部件等各種領域。隨著材料創新投資的不斷成長以及滿足不斷變化的性能基準的需求,市場正穩步向廣泛的工業應用轉變。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 12億美元
預測值 24億美元
複合年成長率 7.3%

2024年,按合金類型分類,3D過渡金屬高熵合金佔據了整體市場佔有率的38.1%。這些合金通常由鐵、鎳、鈷、鉻和錳等元素製成,以其優異的機械彈性、耐腐蝕性和經濟可行性而聞名,是各行各業的理想選擇。它們與粉末冶金和積層製造程序的兼容性進一步拓寬了其應用範圍。這些方法能夠生產複雜的零件並簡化原型製作,這對於需要快速開發週期和耐用原型的行業至關重要。此外,這些合金還具有出色的耐輻射性和高導熱性,使其適用於暴露在極端溫度和工作條件下的系統。

按製造方法分類,鑄造和凝固工藝在2024年佔據43.1%的市場佔有率,佔據市場主導地位。這種主導地位源自於這些技術的可擴展性和成本效益,尤其是在整合到現有冶金系統中時。該工藝不僅支持大規模生產,還在細化晶粒結構和穩定相態方面發揮至關重要的作用,這對於確保材料在高熱應力和機械應力下的長期性能至關重要。儘管粉末冶金和積層製造技術持續受到關注,但鑄造仍然是生產具有複雜設計的大塊零件最具成本效益的方法。

按性能分類,具有優異機械特性的合金在2024年佔據了最大的市場佔有率。這些性能——例如高抗張強度、抗衝擊性和延展性——使零件能夠承受持續的機械負荷而不會發生性能下降。高熵合金獨特的原子結構使其具有固溶強化和抗變形能力,因此在需要在循環應力和高強度操作條件下保持結構完整性的應用中被廣泛使用。它們能夠在保持性能的同時減輕零件重量,這有助於製造商滿足嚴格的監管和安全標準。

在應用方面,結構合金在2024年佔據了最大的市場。由於其抗疲勞性和機械穩定性,這些合金經常被選用於必須承受高負荷或在高應力環境下工作的部件。這些材料的多相結構增強了韌性,有助於防止在高衝擊使用過程中發生故障。因此,這些合金在各種高負載應用中,在注重耐用性、結構耐久性和長使用壽命的系統中越來越受歡迎。

從終端應用產業來看,航太和國防在2024年引領全球市場。這一主導地位反映了該行業對兼具輕量化、高機械強度和耐熱性的材料的持續需求。在快速變化的熱環境中運行的部件需要增強的抗氧化和抗蠕變性能,而這些合金恰好能夠滿足這些要求。它們在惡劣條件下久經考驗的可靠性,將繼續推動該領域的投資和創新,尤其是在關鍵任務系統領域。

從區域來看,美國在2024年的市值達到2.574億美元,領先北美。美國在聯邦政府資助的研究計畫方面擁有堅實的基礎,而航太、國防、能源和汽車產業的需求不斷成長,推動了高熵合金的廣泛應用。這些產業嚴重依賴在機械和熱負荷下性能穩定的材料,這使得高熵合金成為先進製造業的戰略資產。

全球高熵合金市場的競爭格局略顯分散,多家廠商佔據細分市場。各公司專注於專有合金配方、新一代加工技術以及嚴格的行業品質標準,以保持領先地位。創新、客製化和材料性能仍然是影響整個產業競爭定位的核心因素。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
    • 影響價值鏈的因素
    • 利潤率分析
    • 中斷
    • 未來展望
    • 製造商
    • 經銷商
  • 川普政府關稅
    • 對貿易的影響
      • 貿易量中斷
      • 報復措施
    • 對產業的影響
      • 供應方影響(原料)
        • 主要材料價格波動
        • 供應鏈重組
        • 生產成本影響
      • 需求面影響(售價)
        • 價格傳導至終端市場
        • 市佔率動態
        • 消費者反應模式
    • 受影響的主要公司
    • 策略產業反應
      • 供應鏈重組
      • 定價和產品策略
      • 政策參與
    • 展望與未來考慮
  • 貿易統計資料(HS 編碼)註:以上貿易統計資料僅針對主要國家提供。
    • 主要出口國
    • 主要進口國
  • 衝擊力
    • 成長動力
      • 航太和國防領域對輕質高強度材料的需求不斷成長
      • 增加對核反應器和儲能應用先進材料的投資
      • 由於熱穩定性和耐腐蝕性,電動車零件的應用不斷擴大
    • 產業陷阱與挑戰
      • 由於合金成分複雜且加工技術專業,生產成本高
      • 商業規模生產基礎設施和供應鏈整合的可用性有限
      • 各行業缺乏測試和性能指標的標準化
    • 市場機會
  • 利潤率分析
    • 製造流程分析
    • 鑄造與凝固
    • 粉末冶金
    • 積層製造
    • 機械合金化
    • 其他製造方法
  • 技術進步與創新
  • 監管格局
    • 材料測試標準
    • 行業特定的認證要求
    • 環境法規
    • 先進材料的進出口法規
  • 成長潛力分析
  • 2021-2034年價格分析(美元/噸)
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 戰略框架
    • 併購
    • 合資與合作
    • 新產品開發
    • 擴張策略
  • 競爭基準測試
  • 供應商格局
  • 競爭定位矩陣
  • 戰略儀表板
  • 專利分析與創新評估
  • 研發強度分析

第5章:市場估計與預測:按合金類型,2021-2034 年

  • 主要趨勢
  • 3d過渡金屬HEA
    • CoCrFeMnNi(康托合金)
    • 鈷鉻鐵鎳
    • 鈷鉻鐵鎳錳
    • 其他
  • 難熔金屬高熵合金
    • 鈮鉬鉭鎢
    • 釕鈮鉭鎢
    • 鉿鈮鉭鈦鋯
    • 其他
  • 輕金屬高熵合金
    • 鋁鎂鋰鈣鋅
    • 鋁鋰鎂鈧鈦
    • 其他
  • 含鋁HEA
    • 鋁鈷鉻鐵鎳
    • 鋁鈷鉻銅鐵鎳
    • 其他
  • 貴金屬HEA
  • 含稀土元素的高熵合金
  • 其他

第6章:市場估計與預測:依製造方法,2021-2034 年

  • 主要趨勢
  • 鑄造與凝固
    • 電弧熔煉
    • 感應熔煉
    • 真空感應熔煉
  • 粉末冶金
    • 氣體霧化
    • 機械合金化
    • 放電等離子燒結
    • 熱等靜壓
    • 其他
  • 積層製造
    • 選擇性雷射融化
    • 電子束熔煉
    • 直接能量沉積
    • 其他
  • 薄膜沉積
    • 磁控濺射
    • 物理氣相沉積
  • 其他

第7章:市場估計與預測:依物業類型,2021-2034 年

  • 主要趨勢
  • 優異的機械性質
    • 高強度
    • 高硬度
    • 高延展性
    • 耐磨性
    • 其他
  • 熱穩定性
    • 高溫強度
    • 抗蠕變性
    • 熱膨脹控制
    • 其他
  • 耐腐蝕和抗氧化
    • 耐水性腐蝕
    • 抗高溫氧化
    • 其他
  • 磁性
  • 電氣性能
  • 抗輻射
  • 其他

第 8 章:市場估計與預測:按應用,2021 年至 2034 年

  • 主要趨勢
  • 結構應用
    • 高溫結構件
    • 輕質結構部件
    • 其他
  • 功能應用
    • 磁的
    • 電力
    • 催化
    • 其他
  • 塗層和表面處理
    • 耐磨塗層
    • 耐腐蝕塗層
    • 熱障塗層
    • 其他
  • 極端環境應用
    • 低溫
    • 高溫
    • 輻射密集型
    • 其他
  • 其他

第9章:市場估計與預測:按最終用途產業,2021-2034 年

  • 主要趨勢
  • 航太與國防
    • 飛機部件
    • 推進系統
    • 國防裝備
    • 空間
    • 其他
  • 汽車
    • 引擎部件
    • 排氣系統
    • 結構部件
    • 其他
  • 能源
    • 核能
    • 化石燃料發電
    • 再生能源
    • 其他
  • 工業設備
    • 切削刀具
    • 機械零件
    • 其他
  • 電子和半導體
  • 化工和石化
  • 醫療保健
  • 研究與學術
  • 其他

第10章:市場估計與預測:按地區,2021-2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第 11 章:公司簡介

  • Alcoa Corporation
  • AMETEK Specialty Metal Products
  • Aperam SA
  • ATI Metals
  • Aubert & Duval
  • Carpenter Technology Corporation
  • Daido Steel
  • Eramet Group
  • HC Starck GmbH
  • Haynes International
  • High Entropy Alloys Inc.
  • Hitachi Metals
  • H?gan?s AB
  • IHI Corporation
  • Kennametal
  • Materion Corporation
  • Metalysis
  • Nippon Yakin Kogyo
  • Oerlikon Metco
  • Plansee SE
  • Praxair Surface Technologies
  • Questek Innovations
  • Sandvik AB
  • Special Metals Corporation
  • VDM Metals GmbH
簡介目錄
Product Code: 14145

The Global High Entropy Alloy Market was valued at USD 1.2 billion in 2024 and is estimated to grow at a CAGR of 7.3% to reach USD 2.4 billion by 2034. These alloys are composed of five or more principal elements mixed in near-equal ratios, offering a unique combination of mechanical strength, corrosion resistance, and thermal stability. Their growing popularity stems from their performance advantages over conventional alloys, especially in environments that demand resilience to wear, heat, and structural fatigue. This increasing adoption across multiple sectors is backed by a surge in research and development, as manufacturers look for ways to improve material durability, reduce weight, and enhance component longevity.

High Entropy Alloy Market - IMG1

The focus on developing lighter, stronger, and more temperature-tolerant materials is critical as industries prioritize energy efficiency and long-term performance. As a result, high entropy alloys are quickly becoming essential in next-generation component manufacturing, where advanced material properties are non-negotiable. These materials are showing strong potential in both traditional and emerging applications, ranging from mobility systems and heavy-duty infrastructure to components used in energy-intensive equipment. With growing investment in material innovation and the need to meet evolving performance benchmarks, the market is witnessing a steady shift toward widespread industrial deployment.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.2 Billion
Forecast Value$2.4 Billion
CAGR7.3%

In 2024, 3D transition metal high entropy alloys accounted for 38.1% of the overall market share by alloy type. These alloys, typically made using elements such as Fe, Ni, Co, Cr, and Mn, are well-known for their mechanical resilience, corrosion resistance, and economic viability, making them ideal for applications across various industries. Their compatibility with powder metallurgy and additive manufacturing processes further broadens their usability. These methods enable the production of complex parts and streamline prototyping, which is valuable in industries that demand quick development cycles and durable prototypes. Additionally, these alloys exhibit excellent radiation tolerance and high thermal conductivity, making them suitable for systems exposed to extreme temperatures and operating conditions.

By manufacturing method, casting and solidification processes led the market with a 43.1% share in 2024. This dominance is driven by the scalability and cost-efficiency of these techniques, especially when integrated into existing metallurgical systems. The process not only supports mass production but also plays a vital role in refining grain structure and stabilizing phases, which are essential for ensuring long-term material performance under high thermal and mechanical stress. Although powder metallurgy and additive manufacturing continue to gain traction, casting remains the most cost-effective approach for producing bulk components with intricate designs.

When categorized by property, alloys with superior mechanical characteristics held the largest market share in 2024. These properties-such as high tensile strength, impact resistance, and ductility-allow components to endure continuous mechanical loading without degradation. The unique atomic structure of high entropy alloys contributes to their solid-solution strengthening and resistance to deformation, which is why they are heavily used in applications that require structural integrity under cyclic stress and intense operational conditions. Their ability to maintain performance while reducing component weight helps manufacturers meet demanding regulatory and safety standards.

In terms of application, structural uses represented the largest share of the market in 2024. These alloys are frequently chosen for components that must bear significant load or operate in high-stress environments due to their fatigue resistance and mechanical stability. The materials' multi-phase structures offer enhanced toughness, which helps prevent failure during high-impact use. As a result, these alloys are gaining ground in systems designed for durability, structural endurance, and long service life across multiple heavy-use applications.

Looking at end-use industries, aerospace and defense led the global market in 2024. This dominance reflects the sector's ongoing demand for materials that combine lightweight characteristics with high mechanical strength and thermal resistance. Components that operate in rapidly changing thermal environments require enhanced oxidation and creep resistance, which these alloys can provide. Their proven reliability in harsh conditions continues to drive investment and innovation in the sector, particularly for mission-critical systems.

Regionally, the United States recorded a market value of USD 257.4 million in 2024, leading North America. The country's strong foundation in federally funded research programs and the growing demand across aerospace, defense, energy, and automotive industries has driven widespread adoption. These sectors rely heavily on materials that perform consistently under mechanical and thermal loads, making high entropy alloys a strategic asset in advanced manufacturing.

The competitive landscape of the global high entropy alloy market is moderately fragmented, with several players holding niche positions. Companies are focusing on proprietary alloy formulations, next-generation processing techniques, and adherence to strict industry quality standards to stay ahead. Innovation, customization, and material performance remain the core areas influencing competitive positioning across the sector.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Trade statistics (HS Code)Note: the above trade statistics will be provided for key countries only.
    • 3.3.1 Major exporting countries
    • 3.3.2 Major importing countries
  • 3.4 Impact forces
    • 3.4.1 Growth drivers
      • 3.4.1.1 Rising demand for lightweight and high-strength materials in aerospace and defense sectors
      • 3.4.1.2 Increased investment in advanced materials for nuclear reactor and energy storage applications
      • 3.4.1.3 Expanding usage in electric vehicle components due to thermal stability and corrosion resistance
    • 3.4.2 Industry pitfalls & challenges
      • 3.4.2.1 High production costs due to complex alloy compositions and specialized processing techniques
      • 3.4.2.2 Limited availability of commercial-scale production infrastructure and supply chain integration
      • 3.4.2.3 Lack of standardization in testing and performance metrics across industries
    • 3.4.3 Market opportunities
  • 3.5 Profit margin analysis
    • 3.5.1 Manufacturing process analysis
    • 3.5.2 Casting & solidification
    • 3.5.3 Powder metallurgy
    • 3.5.4 Additive manufacturing
    • 3.5.5 Mechanical alloying
    • 3.5.6 Other manufacturing methods
  • 3.6 Technological advancements and innovations
  • 3.7 Regulatory landscape
    • 3.7.1 Material testing standards
    • 3.7.2 Industry-specific certification requirements
    • 3.7.3 Environmental regulations
    • 3.7.4 Import/export regulations for advanced materials
  • 3.8 Growth potential analysis
  • 3.9 Pricing analysis (USD/Tons) 2021-2034
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis, 2024
  • 4.3 Strategic framework
    • 4.3.1 Mergers & acquisition
    • 4.3.2 Joint venture & collaborations
    • 4.3.3 New product development
    • 4.3.4 Expansion strategies
  • 4.4 Competitive benchmarking
  • 4.5 Vendor landscape
  • 4.6 Competitive positioning matrix
  • 4.7 Strategic dashboard
  • 4.8 Patent analysis & Innovation assessment
  • 4.9 Research & Development Intensity Analysis

Chapter 5 Market Estimates and Forecast, By Alloy Type, 2021–2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 3d transition metal HEAs
    • 5.2.1 CoCrFeMnNi (cantor alloy)
    • 5.2.2 CoCrFeNi
    • 5.2.3 CoCrFeNiMn
    • 5.2.4 Others
  • 5.3 Refractory metal HEAs
    • 5.3.1 NbMoTaW
    • 5.3.2 VNbMoTaW
    • 5.3.3 HfNbTaTiZr
    • 5.3.4 Others
  • 5.4 Light metal HEAs
    • 5.4.1 AlMgLiCaZn
    • 5.4.2 AlLiMgScTi
    • 5.4.3 Others
  • 5.5 Aluminum-containing HEAs
    • 5.5.1 AlCoCrFeNi
    • 5.5.2 AlCoCrCuFeNi
    • 5.5.3 Others
  • 5.6 Precious metal HEAs
  • 5.7 Rare earth element-containing HEAs
  • 5.8 Others

Chapter 6 Market Estimates and Forecast, By Manufacturing Method, 2021–2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Casting & solidification
    • 6.2.1 Arc melting
    • 6.2.2 Induction melting
    • 6.2.3 Vacuum induction melting
  • 6.3 Powder metallurgy
    • 6.3.1 Gas atomization
    • 6.3.2 Mechanical alloying
    • 6.3.3 Spark plasma sintering
    • 6.3.4 Hot isostatic pressing
    • 6.3.5 Others
  • 6.4 Additive manufacturing
    • 6.4.1 Selective laser melting
    • 6.4.2 Electron beam melting
    • 6.4.3 Direct energy deposition
    • 6.4.4 Others
  • 6.5 Thin film deposition
    • 6.5.1 Magnetron sputtering
    • 6.5.2 Physical vapor deposition
  • 6.6 Others

Chapter 7 Market Estimates and Forecast, By Property, 2021–2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Superior mechanical properties
    • 7.2.1 High strength
    • 7.2.2 High hardness
    • 7.2.3 High ductility
    • 7.2.4 Wear resistance
    • 7.2.5 Others
  • 7.3 Thermal stability
    • 7.3.1 High-temperature strength
    • 7.3.2 Creep resistance
    • 7.3.3 Thermal expansion control
    • 7.3.4 Others
  • 7.4 Corrosion & oxidation resistance
    • 7.4.1 Aqueous corrosion resistance
    • 7.4.2 High-temperature oxidation resistance
    • 7.4.3 Others
  • 7.5 Magnetic properties
  • 7.6 Electrical properties
  • 7.7 Radiation resistance
  • 7.8 Others

Chapter 8 Market Estimates and Forecast, By Application, 2021–2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 Structural applications
    • 8.2.1 High-temperature structural components
    • 8.2.2 Lightweight structural components
    • 8.2.3 Others
  • 8.3 Functional applications
    • 8.3.1 Magnetic
    • 8.3.2 Electrical
    • 8.3.3 Catalytic
    • 8.3.4 Others
  • 8.4 Coatings & surface treatments
    • 8.4.1 Wear-resistant coatings
    • 8.4.2 Corrosion- resistant coatings
    • 8.4.3 Thermal barrier coatings
    • 8.4.4 Others
  • 8.5 Extreme environment applications
    • 8.5.1 Cryogenic
    • 8.5.2 High temperature
    • 8.5.3 Radiation-intensive
    • 8.5.4 Others
  • 8.6 Others

Chapter 9 Market Estimates and Forecast, By End Use Industry, 2021–2034 (USD Billion) (Kilo Tons)

  • 9.1 Key trends
  • 9.2 Aerospace & defense
    • 9.2.1 Aircraft components
    • 9.2.2 Propulsion systems
    • 9.2.3 Defense equipment
    • 9.2.4 Space
    • 9.2.5 Others
  • 9.3 Automotive
    • 9.3.1 Engine components
    • 9.3.2 Exhaust systems
    • 9.3.3 Structural components
    • 9.3.4 Others
  • 9.4 Energy
    • 9.4.1 Nuclear energy
    • 9.4.2 Fossil fuel power generation
    • 9.4.3 Renewable energy
    • 9.4.4 Others
  • 9.5 Industrial equipment
    • 9.5.1 Cutting tools
    • 9.5.2 Machinery components
    • 9.5.3 Others
  • 9.6 Electronics & semiconductors
  • 9.7 Chemical & petrochemical
  • 9.8 Medical & healthcare
  • 9.9 Research & academia
  • 9.10 Others

Chapter 10 Market Estimates and Forecast, By Region, 2021–2034 (USD Billion) (Kilo Tons)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Spain
    • 10.3.5 Italy
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 Australia
    • 10.4.5 South Korea
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 Middle East and Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 South Africa
    • 10.6.3 UAE

Chapter 11 Company Profiles

  • 11.1 Alcoa Corporation
  • 11.2 AMETEK Specialty Metal Products
  • 11.3 Aperam S.A.
  • 11.4 ATI Metals
  • 11.5 Aubert & Duval
  • 11.6 Carpenter Technology Corporation
  • 11.7 Daido Steel
  • 11.8 Eramet Group
  • 11.9 H.C. Starck GmbH
  • 11.10 Haynes International
  • 11.11 High Entropy Alloys Inc.
  • 11.12 Hitachi Metals
  • 11.13 H?gan?s AB
  • 11.14 IHI Corporation
  • 11.15 Kennametal
  • 11.16 Materion Corporation
  • 11.17 Metalysis
  • 11.18 Nippon Yakin Kogyo
  • 11.19 Oerlikon Metco
  • 11.20 Plansee SE
  • 11.21 Praxair Surface Technologies
  • 11.22 Questek Innovations
  • 11.23 Sandvik AB
  • 11.24 Special Metals Corporation
  • 11.25 VDM Metals GmbH