封面
市場調查報告書
商品編碼
1755881

碳化矽 (SiC) 半導體裝置市場預測(至 2032 年):按產品、組件、晶圓尺寸、電壓範圍、應用、最終用戶和地區進行的全球分析

Silicon Carbide Semiconductor Devices Market Forecasts to 2032 - Global Analysis By Product (Optoelectronic Devices, Power Semiconductors and Frequency Devices), Component, Wafer Size, Voltage Range, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球碳化矽 (SiC) 半導體裝置市場預計在 2025 年達到 36 億美元,到 2032 年將達到 160.4 億美元,預測期內的複合年成長率為 23.8%。

碳化矽 (SiC) 半導體元件是由碳化矽(矽和碳的化合物)製成的先進電子元件,以其卓越的導熱性、高電場強度和寬能能隙而聞名。這些元件包括二極體、MOSFET、功率模組等,由於其能夠在比傳統矽基元件更高的電壓、溫度和開關頻率下工作,因此可用於高功率和高頻應用。 SiC 半導體能夠提高效率、減少能量損耗並實現緊湊的系統設計,使其成為電動車、可再生能源系統、工業馬達驅動器以及性能和可靠性至關重要的航太應用的理想選擇。

電動車(EV)的普及率迅速提高

電動車 (EV) 的日益普及正在加速 SiC(碳化矽)半導體裝置市場的擴張。 SiC 裝置能夠提高效率、加快開關速度並增強導熱性,使其成為逆變器、車載充電器和動力傳動系統等電動車應用的理想選擇。隨著汽車製造商專注於提升效能、加快充電速度和延長續航里程,對 SiC 元件的需求也不斷成長。市場正在不斷擴大,SiC 半導體技術在電動車電力電子系統中的日益整合也刺激了其創新。

製造和材料成本高

高昂的製造成本和材料成本是阻礙SiC(碳化矽)半導體裝置市場成長的主要因素。複雜的製造流程和高純度碳化矽晶圓等原料的昂貴價格,導致製造成本增加。這些高昂的成本限制了SiC的大規模應用,尤其是在中小型製造商中,削弱了市場競爭力。因此,成本敏感的應用往往傾向於採用傳統的矽基替代品,這阻礙了SiC裝置的廣泛市場滲透。

可再生能源與電力電子

再生能源來源的日益普及以及電力電子技術的進步,正在推動碳化矽 (SiC) 半導體裝置市場的發展。 SiC 裝置具有高效率、快速開關和優異的熱性能,使其成為太陽能逆變器、風力發電機和智慧電網應用的理想選擇。全球脫碳趨勢的日益增強,推動了可再生能源系統對 SiC 基解決方案的需求,從而刺激了技術創新,並擴大了清潔能源和電力電子領域的市場機會。

晶圓供應有限和品質問題

晶圓供應有限且持續存在的品質問題嚴重阻礙了SiC(碳化矽)半導體裝置市場的成長。這些限制因素導致生產延遲、製造成本上升和產量比率下降,影響了供應鏈效率和整體市場的可擴展性。此外,由於無法滿足電動車和電力電子等高成長領域日益成長的需求,也阻礙了技術進步,並抑制了SiC裝置開發的潛在投資。

COVID-19的影響

新冠疫情最初擾亂了SiC(碳化矽)半導體裝置市場,原因是供應鏈中斷、工廠停工以及工業活動減少。然而,隨著電動車和可再生能源領域對節能解決方案的需求不斷成長,市場逐漸復甦。疫情加速了數位轉型,並推動了SiC裝置在高性能電子設備中的應用,使其在後謀殺時代更具韌性和適應性。

預計電源模組市場在預測期內將佔據最大佔有率

功率模組領域預計將在預測期內佔據最大的市場佔有率,因為它們具有更高的能源效率、高壓能力和卓越的熱性能。這些模組可實現緊湊輕巧的設計,使其成為電動車、可再生能源系統和工業應用的理想選擇。對快速開關速度和低能量損耗的需求日益成長,正在加速碳化矽功率模組的採用,從而推動技術進步並提高其與整體高性能電力電子系統的整合度。

預計預測期內 LED 照明領域將以最高的複合年成長率成長。

由於對高效電力電子裝置的需求,預計LED照明領域將在預測期內實現最高成長率。 SiC裝置具有高導熱性、更高的耐壓性和更高的能效,使其成為LED電源和驅動器的理想選擇。隨著節能照明日益普及,尤其是在商業和工業環境中,對可靠且緊湊的SiC基解決方案的需求也日益成長。

最大佔有率區域:

預計亞太地區將在預測期內佔據最大的市場佔有率,這得益於工業自動化水平的提高、電動汽車的廣泛普及以及可再生能源的廣泛應用。中國、日本和韓國等國在高效能電力電子領域的大力投資,增加了碳化矽元件的需求。政府鼓勵綠色技術和能源效率的計劃也推動了市場成長,使亞太地區成為碳化矽半導體開發和生產的主要樞紐。

複合年成長率最高的地區:

預計北美地區在預測期內將實現最高的複合年成長率,這得益於電動車 (EV) 行業的擴張、可再生能源的普及以及工業自動化的進步。與傳統矽相比,SiC 裝置具有更高的效率、熱性能和耐用性,使其成為高功率應用的理想選擇。政府的支持性政策、智慧電網基礎設施投資的增加以及對節能解決方案日益成長的需求,進一步刺激了市場應用,使北美成為 SiC 技術發展的關鍵樞紐。

免費客製化服務

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 地理細分
    • 根據客戶興趣對主要國家市場進行估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 限制因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章全球SiC(碳化矽)半導體裝置市場(依產品)

  • 光電裝置
  • 功率半導體
  • 頻率裝置

第6章全球碳化矽半導體裝置市場(依組件)

  • 肖特基二極體
  • FET/MOSFET電晶體
  • 積體電路
  • 整流器/二極體
  • 電源模組
  • 其他組件

第7章全球碳化矽半導體裝置市場(依晶圓尺寸)

  • 1英寸到4英寸
  • 6吋
  • 8吋
  • 10吋或以上

8. 全球碳化矽半導體裝置市場(依電壓範圍)

  • 600V以下
  • 601V~1200V
  • 1200V以上

第9章全球SiC(碳化矽)半導體裝置市場(依應用)

  • 電源和逆變器
  • 射頻設備和行動電話基地台
  • LED照明
  • 電動車(EV)
  • 充電基礎設施
  • 工業馬達驅動器
  • 其他用途

第 10 章全球 SiC(碳化矽)半導體裝置市場(依最終用戶)

  • 消費性電子產品
  • 航太和國防
  • 醫療設備
  • 數據和通訊設備
  • 能源和電力
  • 其他最終用戶

第11章全球SiC(碳化矽)半導體裝置市場(按區域)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章 公司概況

  • Wolfspeed, Inc.
  • STMicroelectronics
  • Infineon Technologies AG
  • ON Semiconductor
  • ROHM Semiconductor
  • Mitsubishi Electric Corporation
  • Toshiba Corporation
  • Littelfuse, Inc.
  • Fuji Electric Co., Ltd.
  • Renesas Electronics Corporation
  • Microchip Technology Inc.
  • United Silicon Carbide, Inc.
  • Power Integrations, Inc.
  • Global Power Technologies Group
  • SemiQ Inc.
  • Diodes Incorporated
  • Alpha and Omega Semiconductor
Product Code: SMRC29775

According to Stratistics MRC, the Global Silicon Carbide Semiconductor Devices Market is accounted for $3.6 billion in 2025 and is expected to reach $16.04 billion by 2032 growing at a CAGR of 23.8% during the forecast period. Silicon Carbide (SiC) semiconductor devices are advanced electronic components made from silicon carbide, a compound of silicon and carbon known for its exceptional thermal conductivity, high electric field strength, and wide bandgap. These devices, including diodes, MOSFETs, and power modules, are used in high-power and high-frequency applications due to their ability to operate at higher voltages, temperatures, and switching frequencies compared to traditional silicon-based devices. SiC semiconductors offer improved efficiency, reduced energy losses, and compact system designs, making them ideal for electric vehicles, renewable energy systems, industrial motor drives, and aerospace applications where performance and reliability are critical.

Market Dynamics:

Driver:

Surging Electric Vehicle (EV) Adoption

The growing popularity of electric vehicles (EVs) is accelerating the expansion of the Silicon Carbide (SiC) semiconductor device market. SiC devices offer improved efficiency, faster switching, and stronger thermal conductivity, making them excellent for EV applications like inverters, onboard chargers, and powertrains. The demand for SiC components is increasing as automakers place a higher priority on enhanced performance, faster charging, and longer range. The market is expanding and SiC semiconductor technology innovation is being stimulated by this increasing integration in EV power electronics.

Restraint:

High Manufacturing & Material Costs

High manufacturing and material costs significantly hinder the growth of the Silicon Carbide (SiC) Semiconductor Devices Market. The complex fabrication process and the expensive nature of raw materials like high-purity silicon carbide wafers lead to increased production expenses. These high costs limit mass adoption, especially among small and mid-sized manufacturers, and constrain market competitiveness. Consequently, cost-sensitive applications tend to favor traditional silicon-based alternatives, impeding broader market penetration of SiC devices.

Opportunity:

Renewable Energy & Power Electronics

The growing adoption of renewable energy sources and advancements in power electronics are significantly propelling the Silicon Carbide (SiC) Semiconductor Devices Market. SiC devices offer high efficiency, faster switching, and better thermal performance, making them ideal for solar inverters, wind turbines, and smart grid applications. As the global push toward decarbonization intensifies, the demand for SiC-based solutions in renewable energy systems rises, driving innovation and expanding market opportunities across the clean energy and power electronics sectors.

Threat:

Limited Wafer Supply & Quality Issues

Limited wafer supply and persistent quality issues are significantly hindering the growth of the Silicon Carbide (SiC) semiconductor devices market. These constraints lead to production delays, increased manufacturing costs, and reduced yield rates, affecting supply chain efficiency and overall market scalability. Moreover, the inability to meet rising demand from high-growth sectors like electric vehicles and power electronics hampers technological advancements and discourages potential investments in SiC device development.

Covid-19 Impact

The COVID-19 pandemic initially disrupted the Silicon Carbide (SiC) Semiconductor Devices Market due to supply chain interruptions, factory shutdowns, and reduced industrial activities. However, the market gradually rebounded with increased demand for energy-efficient solutions in electric vehicles and renewable energy. The pandemic accelerated digital transformation, boosting the adoption of SiC devices in high-performance electronics, leading to a resilient and adaptive recovery in the post-COVID landscape.

The power modules segment is expected to be the largest during the forecast period

The power modules segment is expected to account for the largest market share during the forecast period as it offers enhanced energy efficiency, high voltage capability, and superior thermal performance. These modules enable compact, lightweight designs, making them ideal for electric vehicles, renewable energy systems, and industrial applications. The rising demand for fast switching speeds and lower energy losses is accelerating the adoption of SiC power modules, thereby driving technological advancements and increasing their integration across high-performance power electronics systems.

The LED lighting segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the LED lighting segment is predicted to witness the highest growth rate, due to demand for power electronics with great efficiency. SiC devices are perfect for LED power supply and drivers because of their enhanced thermal conductivity, increased voltage tolerance, and increased energy efficiency. The need for dependable and small SiC-based solutions increases as energy-efficient lighting becomes more widely used, particularly in commercial and industrial settings.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share because of improvements in industrial automation, the growing use of electric cars, and the incorporation of renewable energy. Demand for SiC devices is increasing as a result of significant investments made in high-efficiency power electronics by nations like China, Japan, and South Korea. Government programs encouraging green technology and energy efficiency also hasten market growth, establishing Asia Pacific as a major center for the development and production of SiC semiconductors.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to expanding electric vehicle (EV) sector, renewable energy adoption, and advancements in industrial automation. SiC devices offer superior efficiency, thermal performance, and durability compared to traditional silicon, making them ideal for high-power applications. Supportive government policies, increasing investments in smart grid infrastructure, and rising demand for energy-efficient solutions are further accelerating market adoption, positioning North America as a key hub for SiC technology development.

Key players in the market

Some of the key players profiled in the Silicon Carbide Semiconductor Devices Market include Wolfspeed, Inc., STMicroelectronics, Infineon Technologies AG, ON Semiconductor, ROHM Semiconductor, Mitsubishi Electric Corporation, Toshiba Corporation, Littelfuse, Inc., Fuji Electric Co., Ltd., Renesas Electronics Corporation, Microchip Technology Inc., United Silicon Carbide, Inc., Power Integrations, Inc., Global Power Technologies Group, SemiQ Inc., Diodes Incorporated and Alpha and Omega Semiconductor.

Key Developments:

In February 2025, Mitsubishi Electric has reached an agreement with HD Renewable Energy, a Taipei-based solar power and battery energy storage systems (BESS) developer, to collaborate on projects aimed at achieving carbon neutrality.

In January 2025, Mitsubishi Electric Corporation, has announced plans to acquire a strategic stake in Bengaluru based Gervigreind Data Science Pvt. Ltd. This collaboration focuses on co developing and marketing no code data analysis and report generation tools that integrate seamlessly with Mitsubishi Electric's factory automation (FA) equipment and GENESIS64(TM) SCADA software-developed by ICONICS, its U.S.

Products Covered:

  • Optoelectronic Devices
  • Power Semiconductors
  • Frequency Devices

Components Covered:

  • Schottky Diodes
  • FET/MOSFET Transistors
  • Integrated Circuits
  • Rectifiers/Diodes
  • Power Modules
  • Other Components

Wafer Sizes Covered:

  • 1 inch to 4 inches
  • 6 inches
  • 8 inches
  • 10 inches & above

Voltage Ranges Covered:

  • Up to 600V
  • 601V to 1200V
  • Above 1200V

Applications Covered:

  • Power Supplies and Inverters
  • RF Devices and Cellular Base Stations
  • LED Lighting
  • Electric Vehicles (EV)
  • Charging Infrastructure
  • Industrial Motor Drives
  • Other Applications

End Users Covered:

  • Automotive
  • Consumer Electronics
  • Aerospace & Defense
  • Medical Devices
  • Data & Communication Devices
  • Energy & Power
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Silicon Carbide Semiconductor Devices Market, By Product

  • 5.1 Introduction
  • 5.2 Optoelectronic Devices
  • 5.3 Power Semiconductors
  • 5.4 Frequency Devices

6 Global Silicon Carbide Semiconductor Devices Market, By Component

  • 6.1 Introduction
  • 6.2 Schottky Diodes
  • 6.3 FET/MOSFET Transistors
  • 6.4 Integrated Circuits
  • 6.5 Rectifiers/Diodes
  • 6.6 Power Modules
  • 6.7 Other Components

7 Global Silicon Carbide Semiconductor Devices Market, By Wafer Size

  • 7.1 Introduction
  • 7.2 1 inch to 4 inches
  • 7.3 6 inches
  • 7.4 8 inches
  • 7.5 10 inches & above

8 Global Silicon Carbide Semiconductor Devices Market, By Voltage Range

  • 8.1 Introduction
  • 8.2 Up to 600V
  • 8.3 601V to 1200V
  • 8.4 Above 1200V

9 Global Silicon Carbide Semiconductor Devices Market, By Application

  • 9.1 Introduction
  • 9.2 Power Supplies and Inverters
  • 9.3 RF Devices and Cellular Base Stations
  • 9.4 LED Lighting
  • 9.5 Electric Vehicles (EV)
  • 9.6 Charging Infrastructure
  • 9.7 Industrial Motor Drives
  • 9.9 Other Applications

10 Global Silicon Carbide Semiconductor Devices Market, By End User

  • 10.1 Introduction
  • 10.2 Automotive
  • 10.3 Consumer Electronics
  • 10.4 Aerospace & Defense
  • 10.5 Medical Devices
  • 10.6 Data & Communication Devices
  • 10.7 Energy & Power
  • 10.8 Other End Users

11 Global Silicon Carbide Semiconductor Devices Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Wolfspeed, Inc.
  • 13.2 STMicroelectronics
  • 13.3 Infineon Technologies AG
  • 13.4 ON Semiconductor
  • 13.5 ROHM Semiconductor
  • 13.6 Mitsubishi Electric Corporation
  • 13.7 Toshiba Corporation
  • 13.8 Littelfuse, Inc.
  • 13.9 Fuji Electric Co., Ltd.
  • 13.10 Renesas Electronics Corporation
  • 13.11 Microchip Technology Inc.
  • 13.12 United Silicon Carbide, Inc.
  • 13.13 Power Integrations, Inc.
  • 13.14 Global Power Technologies Group
  • 13.15 SemiQ Inc.
  • 13.16 Diodes Incorporated
  • 13.17 Alpha and Omega Semiconductor

List of Tables

  • Table 1 Global Silicon Carbide Semiconductor Devices Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Silicon Carbide Semiconductor Devices Market Outlook, By Product (2024-2032) ($MN)
  • Table 3 Global Silicon Carbide Semiconductor Devices Market Outlook, By Optoelectronic Devices (2024-2032) ($MN)
  • Table 4 Global Silicon Carbide Semiconductor Devices Market Outlook, By Power Semiconductors (2024-2032) ($MN)
  • Table 5 Global Silicon Carbide Semiconductor Devices Market Outlook, By Frequency Devices (2024-2032) ($MN)
  • Table 6 Global Silicon Carbide Semiconductor Devices Market Outlook, By Component (2024-2032) ($MN)
  • Table 7 Global Silicon Carbide Semiconductor Devices Market Outlook, By Schottky Diodes (2024-2032) ($MN)
  • Table 8 Global Silicon Carbide Semiconductor Devices Market Outlook, By FET/MOSFET Transistors (2024-2032) ($MN)
  • Table 9 Global Silicon Carbide Semiconductor Devices Market Outlook, By Integrated Circuits (2024-2032) ($MN)
  • Table 10 Global Silicon Carbide Semiconductor Devices Market Outlook, By Rectifiers/Diodes (2024-2032) ($MN)
  • Table 11 Global Silicon Carbide Semiconductor Devices Market Outlook, By Power Modules (2024-2032) ($MN)
  • Table 12 Global Silicon Carbide Semiconductor Devices Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 13 Global Silicon Carbide Semiconductor Devices Market Outlook, By Wafer Size (2024-2032) ($MN)
  • Table 14 Global Silicon Carbide Semiconductor Devices Market Outlook, By 1 inch to 4 inches (2024-2032) ($MN)
  • Table 15 Global Silicon Carbide Semiconductor Devices Market Outlook, By 6 inches (2024-2032) ($MN)
  • Table 16 Global Silicon Carbide Semiconductor Devices Market Outlook, By 8 inches (2024-2032) ($MN)
  • Table 17 Global Silicon Carbide Semiconductor Devices Market Outlook, By 10 inches & above (2024-2032) ($MN)
  • Table 18 Global Silicon Carbide Semiconductor Devices Market Outlook, By Voltage Range (2024-2032) ($MN)
  • Table 19 Global Silicon Carbide Semiconductor Devices Market Outlook, By Up to 600V (2024-2032) ($MN)
  • Table 20 Global Silicon Carbide Semiconductor Devices Market Outlook, By 601V to 1200V (2024-2032) ($MN)
  • Table 21 Global Silicon Carbide Semiconductor Devices Market Outlook, By Above 1200V (2024-2032) ($MN)
  • Table 22 Global Silicon Carbide Semiconductor Devices Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Silicon Carbide Semiconductor Devices Market Outlook, By Power Supplies and Inverters (2024-2032) ($MN)
  • Table 24 Global Silicon Carbide Semiconductor Devices Market Outlook, By RF Devices and Cellular Base Stations (2024-2032) ($MN)
  • Table 25 Global Silicon Carbide Semiconductor Devices Market Outlook, By LED Lighting (2024-2032) ($MN)
  • Table 26 Global Silicon Carbide Semiconductor Devices Market Outlook, By Electric Vehicles (EV) (2024-2032) ($MN)
  • Table 27 Global Silicon Carbide Semiconductor Devices Market Outlook, By Charging Infrastructure (2024-2032) ($MN)
  • Table 28 Global Silicon Carbide Semiconductor Devices Market Outlook, By Industrial Motor Drives (2024-2032) ($MN)
  • Table 29 Global Silicon Carbide Semiconductor Devices Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 30 Global Silicon Carbide Semiconductor Devices Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Silicon Carbide Semiconductor Devices Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 32 Global Silicon Carbide Semiconductor Devices Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 33 Global Silicon Carbide Semiconductor Devices Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 34 Global Silicon Carbide Semiconductor Devices Market Outlook, By Medical Devices (2024-2032) ($MN)
  • Table 35 Global Silicon Carbide Semiconductor Devices Market Outlook, By Data & Communication Devices (2024-2032) ($MN)
  • Table 36 Global Silicon Carbide Semiconductor Devices Market Outlook, By Energy & Power (2024-2032) ($MN)
  • Table 37 Global Silicon Carbide Semiconductor Devices Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.