封面
市場調查報告書
商品編碼
1917867

數據市場-2026-2031年預測

Datafication Market - Forecast from 2026 to 2031

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 148 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

預計數位化市場將從 2025 年的 3,114.82 億美元成長到 2031 年的 6,514.33 億美元,複合年成長率為 13.09%。

數據化市場代表組織從資訊中獲取價值方式的根本性、深遠性轉變,它超越了基礎數據收集,系統地將各種營運和體驗要素轉化為可量化和可分析的形式。這個過程涉及應用先進的工具和研究技術,將複雜且通常非結構化的輸入(從客戶互動和調查方法到機器遙測和環境狀況)轉化為結構化資料資產。由此產生的「數據化」企業能夠實現前所未有的追蹤、衡量和洞察生成水平,從而為真正以數據為中心的組織模式奠定基礎。市場擴張由三大因素的協同作用所驅動:爆炸性的資料成長、日趨成熟的底層技術、資料驅動決策的競爭需求。

核心市場動態與市場催化劑

資料化的關鍵驅動力在於數位和實體領域中資料量、速度和種類持續呈指數級成長。互聯物聯網設備的激增、無處不在的數位交易、社交媒體互動以及感測器密集型環境,正在創造大量的原始資訊流。這種資訊洪流既是挑戰也是機會。資料化服務和平台對於管理、建構和解讀這種複雜性至關重要,能夠將其從營運負擔轉化為策略資源。

這種需求與對高階商業智慧和分析日益成長的需求直接相關。在競爭日益激烈、瞬息萬變的市場中,基於直覺的決策正被基於證據的策略所取代。數據轉換提供了一個至關重要的基礎層,它能夠準備和提煉用於分析的原始數據,使組織能夠從說明報告轉向預測建模和指導性洞察,從而發現新的市場機會、最佳化營運效率並大規模實現個人化客戶參與。

技術基礎和解決方案的演變

數據轉換的實現得益於關鍵技術領域的顯著進步。人工智慧 (AI) 和機器學習 (ML) 尤其重要,它們提供的運算智慧能夠自動識別大規模非結構化資料集中的模式、相關性和異常值,而傳統分析方法難以做到這一點。這些技術對於自動化資料準備、清洗和豐富任務至關重要,這些任務通常會耗費資料專業人員大量的時間。

此外,雲端原生資料平台的成熟帶來了變革性的影響。這些平台提供彈性擴展、整合工具和託管服務,能夠建立從資料擷取和儲存到處理、分析和視覺化的端到端資料管道。這使得資料轉換能夠以更敏捷、更普及的方式進行,讓企業能夠整合各種資料來源並部署進階分析,而無需受限於傳統的本地基礎架構。

競爭格局與策略實施

競爭格局多元化,涵蓋了專業的資料準備和整合軟體供應商、擁有全面資料棧的大型雲端超大規模資料中心業者雲端服務商以及主要企業。領先的解決方案越來越注重用戶易用性和自動化。關鍵產品功能包括智慧數據分析和準備、自動化管道編配以及低程式碼/無程式碼介面,這些功能使核心 IT 團隊以外的眾多「非專業整合人員」也能參與其中。

從供應商和企業的角度來看,在這個市場中取得成功取決於策略實施,即平衡功能性和管治。對組織而言,有效的資料賦能需要與業務目標清晰契合,建立健全的資料管治架構以確保資料品質和沿襲性,並培養跨職能部門的資料素養。其目標是創建一個整合且值得信賴的資料架構,作為提供一致可靠洞察的單一資訊來源。

區域領導力與關鍵生態系統

北美在數據驅動型市場中保持著主導地位,這得益於多種強大因素的共同作用。該地區匯聚了許多技術創新者,他們正推動人工智慧、雲端運算和分析技術的進步。此外,北美成熟的創業投資部門積極主動地推動數位轉型,為先進的數據管理解決方案創造了廣泛的市場。創投界和成熟企業對這些核心底層技術的持續投入,進一步加速了數據驅動型平台和服務的發展與應用。

獨特的挑戰和重要的考慮因素

全面資料轉型面臨許多挑戰,其中最主要的是日益成長的資料隱私和安全問題。隨著企業收集和處理更細緻的個人和營運數據,它們不僅要接受GDPR和CCPA等法規的嚴格審查,還要承擔資料外洩和濫用帶來的聲譽損害風險。為了應對這項挑戰,必須將隱私設計原則和強大的網路安全措施直接融入資料轉型架構中。

此外,實施過程中仍面臨許多技術和文化挑戰。許多組織面臨著舊有系統造成的資料孤島、熟練的資料工程師和資料科學家短缺,以及內部對從依賴直覺的根深蒂固的流程轉向以資料為中心的文化的抵觸情緒。整合不同的資料來源並確保資料品質的持續性,也帶來了持續的營運挑戰。

未來發展與策略挑戰

隨著數據賦能市場從一項技術能力發展成為一項核心業務,預計該市場將繼續保持強勁成長。未來的發展將聚焦於人工智慧賦能的高階自動化、用於智慧資料管理的動態元資料的興起,以及物聯網和邊緣運算賦能的實體流程日益增強的「資料賦能」特性。然而,永續成長將取決於產業能否解決信任缺失的問題。供應商和使用者都必須優先考慮透明、道德且安全的資料實踐,並開發能夠提供強大洞察力以及可證明的合規性和管治的解決方案。成功的企業將利用數據賦能技術建構衡量、洞察和行動的封閉回路型,並將數據智慧融入其營運和策略的基礎之中。

本報告的主要優勢:

  • 深入分析:提供對主要和新興地區的深入市場洞察,重點關注客戶群、政府政策和社會經濟因素、消費者偏好、垂直行業和其他細分市場。
  • 競爭格局:了解全球主要參與者的策略舉措,並了解透過正確的策略進入市場的機會。
  • 市場促進因素與未來趨勢:探討推動市場的動態因素和關鍵趨勢,以及它們將如何塑造未來的市場發展。
  • 可操作的建議:利用這些見解,在快速變化的環境中做出策略決策,並發現新的商機和收入來源。
  • 面向廣泛的受眾:為Start-Ups、研究機構、顧問公司、中小企業和大型企業提供實用且經濟實惠的內容。

以下是一些公司如何使用這份報告的範例

產業與市場分析、機會評估、產品需求預測、打入市場策略、地理擴張、資本投資決策、法規結構及影響、新產品開發、競爭情報

研究範圍:

  • 2022年至2024年的歷史數據和2025年至2031年的預測數據
  • 成長機會、挑戰、供應鏈前景、法規結構與趨勢分析
  • 競爭定位、策略和市場佔有率分析
  • 按業務板塊和地區(包括國家)分類的收入和預測評估
  • 公司概況(策略、產品、財務資訊、關鍵發展等)

目錄

第1章執行摘要

第2章 市場概覽

  • 市場概覽
  • 市場定義
  • 調查範圍
  • 市場區隔

第3章 商業情境

  • 市場促進因素
  • 市場限制
  • 市場機遇
  • 波特五力分析
  • 產業價值鏈分析
  • 政策與法規
  • 策略建議

第4章 技術展望

第5章:按組件分類的資料市場

  • 介紹
  • 解決方案
  • 服務

第6章:以部署方式分類的資料市場

  • 介紹
  • 本地部署

第7章:依科技分類的資料市場

  • 介紹
  • 人工智慧(AI)
  • 機器學習(ML)
  • 其他

第8章:依公司規模分類的資料市場

  • 介紹
  • 小規模
  • 中號
  • 主要企業

第9章:依最終用戶分類的資料市場

  • 介紹
  • BFSI
  • 衛生保健
  • 資訊科技/通訊
  • 零售
  • 軍事/國防
  • 其他

第10章:按地區分類的資料市場

  • 介紹
  • 北美洲
    • 按組件
    • 透過部署
    • 透過技術
    • 按公司規模
    • 最終用戶
    • 按國家/地區
      • 美國
      • 加拿大
      • 墨西哥
  • 南美洲
    • 按組件
    • 透過部署
    • 透過技術
    • 按公司規模
    • 最終用戶
    • 按國家/地區
      • 巴西
      • 阿根廷
      • 其他
  • 歐洲
    • 按組件
    • 透過部署
    • 透過技術
    • 按公司規模
    • 最終用戶
    • 按國家/地區
      • 德國
      • 法國
      • 英國
      • 西班牙
      • 義大利
      • 其他
  • 中東和非洲
    • 按組件
    • 透過部署
    • 透過技術
    • 按公司規模
    • 最終用戶
    • 按國家/地區
      • 沙烏地阿拉伯
      • 阿拉伯聯合大公國
      • 其他
  • 亞太地區
    • 按組件
    • 透過部署
    • 透過技術
    • 按公司規模
    • 最終用戶
    • 按國家/地區
      • 中國
      • 印度
      • 日本
      • 韓國
      • 印尼
      • 泰國
      • 台灣
      • 其他

第11章 競爭格局與分析

  • 主要企業和策略分析
  • 市佔率分析
  • 合併、收購、協議和合作
  • 競爭對手儀錶板

第12章:公司簡介

  • Precog Data, Inc.
  • Matillion Limited
  • IBM
  • Oracle Corporation
  • Amazon Web Services Inc.
  • SAS Institute Inc.
  • Hewlett Packard Enterprise
  • Accenture
  • Dell Technologies
  • Alteryx, Inc

第13章附錄

  • 貨幣
  • 先決條件
  • 基準年和預測年時間表
  • 相關人員的主要收益
  • 調查方法
  • 簡稱
簡介目錄
Product Code: KSI061615874

Datafication Market is forecasted to rise at a 13.09% CAGR, reaching USD 651.433 billion in 2031 from USD 311.482 billion in 2025.

The datafication market represents a fundamental and expansive shift in how organizations derive value from information, moving beyond basic data collection to the systematic transformation of diverse operational and experiential facets into quantified, analyzable formats. This process involves the application of advanced tools and methodologies to convert complex, often unstructured inputs-from customer interactions and supply chain logistics to machine telemetry and environmental conditions-into structured data assets. The resulting "datafication" of the enterprise enables unprecedented levels of tracking, measurement, and insight generation, forming the backbone of a genuinely data-centric organizational model. The market's expansion is driven by the confluence of explosive data growth, the maturation of enabling technologies, and the competitive necessity for data-driven decision-making.

Core Market Dynamics and Catalysts

The primary catalyst for datafication is the ongoing and exponential increase in the volume, velocity, and variety of data generated across the digital and physical landscape. The proliferation of connected IoT devices, omnipresent digital transactions, social media interactions, and sensor-rich environments creates a vast, continuous stream of raw information. This deluge presents both a challenge and an opportunity; datafication services and platforms are essential to manage, structure, and interpret this complexity, transforming it from an operational burden into a strategic resource.

This imperative is directly linked to the escalating demand for sophisticated business intelligence and analytics. In increasingly competitive and fast-moving markets, intuition-based decision-making is being supplanted by evidence-based strategies. Datafication provides the critical foundational layer, preparing and refining raw data for analysis. It enables organizations to move from descriptive reporting to predictive modeling and prescriptive insights, uncovering new market opportunities, optimizing operational efficiency, and personalizing customer engagement at scale.

Technological Enablers and Solution Evolution

The practical realization of datafication is powered by significant advancements in key technological domains. Artificial Intelligence (AI) and Machine Learning (ML) are particularly pivotal, providing the computational intelligence to automate the identification of patterns, correlations, and anomalies within massive, unstructured datasets that defy traditional analytical approaches. These technologies are integral to automating data preparation, cleansing, and enrichment tasks, which traditionally consume a disproportionate share of data professionals' time.

Furthermore, the maturation of cloud-native data platforms has been transformative. These platforms offer the elastic scalability, integrated tooling, and managed services required to build end-to-end data pipelines-from ingestion and storage through processing, analysis, and visualization. They facilitate a more agile and democratized approach to datafication, allowing organizations to integrate diverse data sources and deploy advanced analytics without the constraints of legacy on-premises infrastructure.

Competitive Landscape and Strategic Implementation

The competitive ecosystem is diverse, encompassing specialized data preparation and integration software vendors, major cloud hyperscalers with comprehensive data stacks, and analytics-focused powerhouses. Leading solutions are increasingly focused on enhancing user accessibility and automation. Key product capabilities center on intelligent data profiling and preparation, automated pipeline orchestration, and low-code/no-code interfaces that empower a broader range of "citizen integrators" beyond core IT teams.

Success in this market, from both a vendor and enterprise perspective, hinges on strategic implementation that balances capability with governance. For organizations, effective datafication requires a clear alignment with business objectives, robust data governance frameworks to ensure quality and lineage, and the cultivation of data literacy across functions. The goal is to create a cohesive, trusted data fabric that serves as a single source of truth, enabling consistent and reliable insights.

Regional Leadership and Dominant Ecosystems

North America maintains a dominant position in the datafication market, a status reinforced by a powerful combination of factors. The region is home to a high concentration of technology innovators driving advancements in AI, cloud computing, and analytics. Its mature enterprise sector, characterized by early and aggressive adoption of digital transformation initiatives, creates a ready market for sophisticated data management solutions. Substantial and sustained investment from both the venture capital community and established corporations in these core enabling technologies further accelerates the development and adoption of datafication platforms and services.

Inherent Challenges and Critical Considerations

The pursuit of comprehensive datafication is not without significant hurdles. Paramount among these are escalating data privacy and security concerns. As organizations collect and process more granular personal and operational data, they face heightened regulatory scrutiny under frameworks like GDPR and CCPA, alongside increased risks of data breaches and reputational damage from misuse. Navigating this landscape requires embedding privacy-by-design principles and robust cybersecurity measures directly into datafication architectures.

Additionally, the technical and cultural challenges of implementation remain substantial. Many organizations grapple with legacy systems that create data silos, a shortage of skilled data engineers and scientists, and internal resistance to shifting from entrenched, intuition-driven processes to a data-centric culture. The complexity of integrating disparate data sources and ensuring ongoing data quality presents a continuous operational challenge.

Future Trajectory and Strategic Imperatives

The datafication market is poised for continued robust growth, evolving from a technical capability into a core business discipline. Future developments will likely focus on greater automation through AI, the rise of active metadata for intelligent data management, and the increased "datafication" of physical processes via IoT and edge computing. However, sustainable growth will depend on the industry's ability to address the trust deficit. Vendors and adopters alike must prioritize transparent, ethical, and secure data practices, developing solutions that provide not only powerful insights but also demonstrable compliance and governance. The organizations that will thrive are those that successfully harness datafication to create a closed loop of measurement, insight, and action, embedding data intelligence into the very fabric of their operations and strategy.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data from 2022 to 2024 & forecast data from 2025 to 2031
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others.)

Datafication Market Segmentation

  • By Component
  • Solutions
  • Services
  • By Deployment
  • Cloud
  • On-Premise
  • By Technology
  • Artificial Intelligence (AI)
  • Machine Learning (ML)
  • Others
  • By Enterprise Size
  • Small
  • Medium
  • Large
  • By End-User
  • BFSI
  • Healthcare
  • IT & Telecommunication
  • Retail
  • Military & Defense
  • Others
  • By Geography
  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Thailand
  • Taiwan
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study
  • 2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. DATAFICATION MARKET BY COMPONENT

  • 5.1. Introduction
  • 5.2. Solutions
  • 5.3. Services

6. DATAFICATION MARKET BY DEPLOYMENT

  • 6.1. Introduction
  • 6.2. Cloud
  • 6.3. On-Premise

7. DATAFICATION MARKET BY TECHNOLOGY

  • 7.1. Introduction
  • 7.2. Artificial Intelligence (AI)
  • 7.3. Machine Learning (ML)
  • 7.4. Others

8. DATAFICATION MARKET BY ENTERPRISE SIZE

  • 8.1. Introduction
  • 8.2. Small
  • 8.3. Medium
  • 8.4. Large

9. DATAFICATION MARKET BY END-USER

  • 9.1. Introduction
  • 9.2. BFSI
  • 9.3. Healthcare
  • 9.4. IT & Telecommunication
  • 9.5. Retail
  • 9.6. Military & Defense
  • 9.7. Others

10. DATAFICATION MARKET BY GEOGRAPHY

  • 10.1. Introduction
  • 10.2. North America
    • 10.2.1. By Component
    • 10.2.2. By Deployment
    • 10.2.3. By Technology
    • 10.2.4. By Enterprise Size
    • 10.2.5. By End-User
    • 10.2.6. By Country
      • 10.2.6.1. USA
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. South America
    • 10.3.1. By Component
    • 10.3.2. By Deployment
    • 10.3.3. By Technology
    • 10.3.4. By Enterprise Size
    • 10.3.5. By End-User
    • 10.3.6. By Country
      • 10.3.6.1. Brazil
      • 10.3.6.2. Argentina
      • 10.3.6.3. Others
  • 10.4. Europe
    • 10.4.1. By Component
    • 10.4.2. By Deployment
    • 10.4.3. By Technology
    • 10.4.4. By Enterprise Size
    • 10.4.5. By End-User
    • 10.4.6. By Country
      • 10.4.6.1. Germany
      • 10.4.6.2. France
      • 10.4.6.3. United Kingdom
      • 10.4.6.4. Spain
      • 10.4.6.5. Italy
      • 10.4.6.6. Others
  • 10.5. Middle East and Africa
    • 10.5.1. By Component
    • 10.5.2. By Deployment
    • 10.5.3. By Technology
    • 10.5.4. By Enterprise Size
    • 10.5.5. By End-User
    • 10.5.6. By Country
      • 10.5.6.1. Saudi Arabia
      • 10.5.6.2. UAE
      • 10.5.6.3. Others
  • 10.6. Asia Pacific
    • 10.6.1. By Component
    • 10.6.2. By Deployment
    • 10.6.3. By Technology
    • 10.6.4. By Enterprise Size
    • 10.6.5. By End-User
    • 10.6.6. By Country
      • 10.6.6.1. China
      • 10.6.6.2. India
      • 10.6.6.3. Japan
      • 10.6.6.4. South Korea
      • 10.6.6.5. Indonesia
      • 10.6.6.6. Thailand
      • 10.6.6.7. Taiwan
      • 10.6.6.8. Others

11. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 11.1. Major Players and Strategy Analysis
  • 11.2. Market Share Analysis
  • 11.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 11.4. Competitive Dashboard

12. COMPANY PROFILES

  • 12.1. Precog Data, Inc.
  • 12.2. Matillion Limited
  • 12.3. IBM
  • 12.4. Oracle Corporation
  • 12.5. Amazon Web Services Inc.
  • 12.6. SAS Institute Inc.
  • 12.7. Hewlett Packard Enterprise
  • 12.8. Accenture
  • 12.9. Dell Technologies
  • 12.10. Alteryx, Inc

13. APPENDIX

  • 13.1. Currency
  • 13.2. Assumptions
  • 13.3. Base and Forecast Years Timeline
  • 13.4. Key Benefits for the Stakeholders
  • 13.5. Research Methodology
  • 13.6. Abbreviations