封面
市場調查報告書
商品編碼
1807614

空氣分離裝置市場(按產品、技術、營運模式、產能、安裝類型和最終用途產業)—2025-2030 年全球預測

Air Separation Plant Market by Product, Technology, Operation Mode, Capacity, Installation Type, End Use Industry - Global Forecast 2025-2030

出版日期: | 出版商: 360iResearch | 英文 190 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

2024 年空氣分離裝置市值為 50.2 億美元,預計 2025 年將成長至 52.7 億美元,複合年成長率為 5.19%,到 2030 年將達到 68 億美元。

主要市場統計數據
基準年2024年 50.2億美元
預計2025年 52.7億美元
預計2030年 68億美元
複合年成長率(%) 5.19%

對影響工業氣體供需的空氣分離裝置的核心技術、產品差異化和運作模式的權威定位

空氣分離裝置產業處於工業需求、技術發展和監管變革的關鍵交匯點,需要為規劃投資和營運調整的相關人員提供明確的方向。本簡介概述了空氣分離系統的核心功能——生產氮氣、氧氣和氬氣等主要氣體——以及氪氣、氖氣和氙氣等稀有氣體的專業供應鏈,並解釋了這些產品流如何支持從醫療保健到半導體製造等各個行業。透過闡明低溫和非低溫技術的差異以及公司供應和現場供應之間的操作差異,為讀者提供理解以下章節所需的概念框架。

技術、營運和需求面轉型的深度融合正在重塑整個空氣分離價值鏈的競爭優勢

空氣分離領域正在經歷一場變革,其驅動力包括脫碳目標、營運數位化以及不斷變化的終端用戶需求,這些需求正在重新定義競爭優勢。在技​​術方面,低溫系統的漸進式改進與非低溫方法的快速發展相得益彰。膜分離和變壓式吸附在中型和模組化應用中越來越可行,陶瓷、中空纖維和聚合物薄膜材料的創新正在提高選擇性和使用壽命。因此,資產所有者正在評估生命週期總擁有成本,而不僅僅是初始投資,這促使他們重新平衡採購標準,轉向能源效率、可維護性和可再生能源整合。

關於 2025 年關稅如何改變空氣分離計劃的採購、供應鏈本地化和供應商選擇優先順序的策略分析

2025年實施的重大關稅將對空分裝置的資本採購、供應商選擇和供應鏈架構產生累積影響,其影響範圍涵蓋設備採購到計劃交付時間等各個方面。低溫塔、專用壓縮機和薄膜組件等進口零件的到岸成本不斷上升,這正在重塑供應商評估,並促使採購團隊優先考慮本地製造的替代方案或協商保護性合約條款。因此,開發供應商正在將關稅風險納入採購規範和應急計劃,延長供應商合格期限,並優先考慮製造地分佈在各地的供應商。

整合產品類型、技術路徑、營運模式、容量層級、安裝選項和最終用途產業要求的綜合細分情報

基於細分的洞察揭示了差異化的產品類型、技術平台、營運模式、容量層級、安裝選項和最終用途產業如何創造獨特的價值池和營運重點。透過產品細分,氧氣、氮氣和氬氣等主要氣體仍然是工業應用的支柱,而氪氣、氖氣和氙氣等稀有氣體則服務於專門的高價值細分市場。同時,非冷媒方法,包括膜分離和變壓式吸附,以及陶瓷膜、中空纖維膜和聚合物膜等膜亞型,正在為中小型應用提供模組化、低能耗的解決方案。

具有區域差異化觀點的公司,了解美洲、中東和非洲以及亞太地區的動態將如何影響技術採用、區域化和需求組合

區域動態對整個空氣分離生態系的技術採用、供應鏈設計、監管風險和需求結構有重大影響。在美洲,成熟的產業叢集和強大的現場及商業供應商基礎推動著低溫和非低溫解決方案的均衡採用,特別注重與脫碳項目和模組化現場系統的整合,以降低物流風險。在歐洲、中東和非洲,不同的監管環境、能源轉型政策和基礎設施構成了碎片化的格局,先進製造業的高純度需求與傳統工業區的棕地現代化機會並存。歐洲、中東和非洲地區的政策制定者和公用事業公司通常透過獎勵機制和電網脫碳時間表來影響計劃的經濟效益,因此監管參與對計劃可行性至關重要。

推動空氣分離解決方案供應商差異化、服務模式和區域市場滲透的關鍵企業級策略行動和夥伴關係

公司層級的策略越來越注重技術差異化、售後服務、策略聯盟以及拓展區域能力,以抓住整個空分領域的發展機會。領先的設備和解決方案供應商正優先投資模組化和非冷媒技術,以縮短中型應用的部署週期並降低資本強度,同時提高大型高純度設施的低溫效率。服務內容正在從交易型維護轉向基於結果的契約,該合約捆綁了預測性維護、備件保固和性能保證,從而創造經常性收益流並建立更緊密的客戶關係。

為高階主管提供實際的優先策略行動,以增強供應鏈彈性、最佳化技術選擇並加速空氣分離計劃的價值實現

產業領導者應採取一系列切實可行的優先事項,將策略洞察轉化為採購、技術和服務領域的永續營運優勢。首先,協商包含價格調整機制和原產地透明度的長期供應協議,同時實現採購多元化,並加速高風險零件的近岸外包,以減輕關稅影響並縮短前置作業時間。其次,將技術投資與最終用途需求結合,最佳化資本配置和部署速度,針對中小型需求採用非低溫模組化解決方案,為需要持續高純度供應的設施預留低溫多塔裝置。

一種透明且可複製的研究途徑,結合專家訪談、技術綜合、情境測試和交叉檢驗,得出可行的結論

支撐這些研究結果的調查方法結合了結構化的一手資料研究、專家意見、嚴格的二手證據整合以及三角測量分析,以確保研究的穩健性和可操作性。主要資訊包括對工廠營運商、EPC承包商、目標商標產品製造商、技術開發商和最終用戶採購主導者的訪談,以了解營運限制、供應商績效經驗以及技術採用的障礙。二手資料分析則利用技術標準、監管文件、專利活動和公開的計劃案例,來檢驗技術發展軌跡和過往的採用模式。

策略整合再次證明,技術靈活性、供應鏈彈性和服務創新將決定空氣分離產業的長期成功

總而言之,空氣分離裝置的格局正在從主要由規模經濟定義的模式轉變為由技術靈活性、供應鏈彈性和服務主導模式決定長期競爭的模式。雖然主要氣體將繼續支持廣泛的工業活動,但稀有氣體將擴展到需要高純度和可追溯性的戰略性利基市場。技術選擇將擴大受到能源效率、部署速度以及與電氣化和可再生能源整合能力等因素的綜合影響,這使得非低溫和模組化配置在許多使用案例中更具吸引力。

目錄

第1章:前言

第2章調查方法

第3章執行摘要

第4章 市場概述

第5章市場動態

  • 採用先進的薄膜分離技術提高空分裝置的能源效率
  • 實施數位雙胞胎和預測分析以最佳化空氣分離裝置的性能和維護
  • 推出模組化和撬裝式空氣分離裝置,可在偏遠的工業設施中快速安裝
  • 在空氣分離設施中整合再生能源來源和綠色氫氣生產以減少排放
  • 利用低溫熱回收系統降低營運成本並提高空氣分離過程的永續性。
  • 根據嚴格的純度標準,擴展醫療和食品級應用的現場氮氣和氧氣生成解決方案
  • 與空氣分離裝置營運商和工業氣體供應商建立策略夥伴關係,確保長期供應協議

第6章 市場洞察

  • 波特五力分析
  • PESTEL分析

第7章:2025年美國關稅的累積影響

8. 空氣分離裝置市場(依產品)

  • 主要氣體
    • 氬氣
  • 稀有氣體

9. 空氣分離裝置市場(依技術)

  • 低溫空氣分離
    • 雙柱低溫
    • 單塔低溫
  • 非深冷空氣分離
    • 膜分離
      • 陶瓷膜
      • 中空纖維膜
      • 聚合物薄膜
    • 變壓式吸附

第 10 章空氣分離裝置市場(依營運模式)

  • 商業銷售類型
  • 現場

11. 空氣分離裝置市場(依容量)

  • 大規模
  • 中等尺寸
  • 小規模

第 12 章。空氣分離裝置市場(依安裝類型)

  • 棕地
  • 待開發區

13. 空氣分離裝置市場(依最終用途產業)

  • 化工和石化
  • 電子和半導體
  • 食品/飲料
  • 醫療保健和醫學
  • 鋼鐵製造
  • 石油和天然氣
  • 水和污水處理

14. 美國空氣分離裝置市場

  • 美國
  • 加拿大
  • 墨西哥
  • 巴西
  • 阿根廷

15.歐洲、中東和非洲空氣分離裝置市場

  • 英國
  • 德國
  • 法國
  • 俄羅斯
  • 義大利
  • 西班牙
  • 阿拉伯聯合大公國
  • 沙烏地阿拉伯
  • 南非
  • 丹麥
  • 荷蘭
  • 卡達
  • 芬蘭
  • 瑞典
  • 奈及利亞
  • 埃及
  • 土耳其
  • 以色列
  • 挪威
  • 波蘭
  • 瑞士

16.亞太空氣分離裝置市場

  • 中國
  • 印度
  • 日本
  • 澳洲
  • 韓國
  • 印尼
  • 泰國
  • 菲律賓
  • 馬來西亞
  • 新加坡
  • 越南
  • 台灣

第17章競爭格局

  • 2024年市場佔有率分析
  • 2024年FPNV定位矩陣
  • 競爭分析
    • AMCS Corporation
    • Nikkiso Clean Energy & Industrial Gases Group
    • Comi Polaris Systems
    • CRYOSPAIN, SL
    • Hangzhou Azbel Technology Co., Ltd.
    • Hangzhou Fortune Gas Cryogenic Group Co., Ltd.
    • Hangzhou Nuzhuo Technology Co., Ltd.
    • Hangzhou Oxygen Group Co., Ltd.
    • INOX-Air Products Inc.
    • Jilin Hangairsep Co., Ltd.
    • Kaifeng Air Separation Group Co., Ltd.
    • KROHNE Group
    • L'AIR LIQUIDE SA
    • Linde PLC
    • Messer Group
    • Nikkiso Co., Ltd.
    • Novair Group
    • Ranch Cryogenics, Inc.
    • Sanghi Oxygen PVT.LTD,
    • SIAD Macchine Impianti SpA
    • Sichuan Air Separation Plant Group
    • Siemens AG.
    • Sinerga SpA
    • Suzhou Oxygen Plant Co., Ltd.
    • Taiyo Nippon Sanso Corporation
    • Technex Group
    • Universal Industrial Gases, Inc.
    • Universal Ing. La. Boschi Plants Pvt. Ltd.
    • Wobo Industrial Group Corp.
    • Yingde Gases Group Company Limited
    • Zhejiang Yuanda Air Separation Equipment Co., Ltd.

第18章 研究人工智慧

第19章 研究統計

第20章 研究聯絡人

第21章 研究報導

第22章 附錄

簡介目錄
Product Code: MRR-FD3F12D5282D

The Air Separation Plant Market was valued at USD 5.02 billion in 2024 and is projected to grow to USD 5.27 billion in 2025, with a CAGR of 5.19%, reaching USD 6.80 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.02 billion
Estimated Year [2025] USD 5.27 billion
Forecast Year [2030] USD 6.80 billion
CAGR (%) 5.19%

An authoritative orientation to core air separation plant technologies, product distinctions, and operational paradigms shaping industrial gas supply and demand

The air separation plant sector stands at a pivotal intersection of industrial demand, technological evolution, and regulatory change, requiring a clear orientation for stakeholders planning investments or operational adjustments. This introduction frames the core functional roles of air separation systems in producing primary gases such as nitrogen, oxygen, and argon, alongside the specialized supply chain for rare gases including krypton, neon, and xenon, and explains how these product streams underpin sectors from healthcare to semiconductor fabrication. By clarifying the distinctions between cryogenic and non-cryogenic technologies and the operational dichotomy of merchant versus onsite supply, this orientation equips readers with the conceptual map needed to interpret subsequent sections.

Beyond technology taxonomy, the introduction highlights emergent drivers that are reshaping demand profiles: intensifying requirements for high-purity gases in electronics and life sciences, the growing appetite for onsite gas generation to mitigate logistics risk, and the influence of installation typologies such as brownfield upgrades versus greenfield builds on capital deployment patterns. This contextualization also previews how capacity choices-large, medium, and small scale-interact with project economics and supply chain resilience. Ultimately, the introduction establishes the analytical lens through which stakeholders can assess vendor strategies, project delivery models, and risk mitigation tactics in an environment defined by both opportunity and structural disruption

An in-depth synthesis of technological, operational, and demand-side transformations that are reshaping competitive advantage across the air separation value chain

The landscape of air separation is undergoing transformative shifts driven by decarbonization goals, digitalization of operations, and evolving end-use demands that collectively redefine competitive advantage. On the technology front, the incremental improvements to cryogenic systems are being matched by rapid advances in non-cryogenic methods; membrane separation and pressure-swing adsorption are increasingly viable for mid-scale and modular applications while innovations in ceramic, hollow-fibre, and polymeric membrane materials are improving selectivity and longevity. As a result, asset owners are evaluating lifecycle total cost of ownership rather than upfront capex alone, prompting a rebalancing of procurement criteria toward energy efficiency, maintainability, and integration with renewable electricity sources.

Simultaneously, market dynamics are altering project rationales: demand for ultra-high-purity gases in semiconductor fabrication and advanced medical therapies is expanding the market for rare gases and specialized purification trains, whereas industrial decarbonization is incentivizing electrified processes and waste heat integration that reduce operational carbon intensity. Supply chain resilience has risen to strategic prominence, encouraging firms to pursue localization and supplier diversification. In parallel, digital solutions-predictive maintenance, remote asset management, and performance analytics-are shifting service models from reactive maintenance toward outcome-based contracts, thereby changing revenue models for equipment suppliers and service providers. Together, these shifts create an environment where technical differentiation, supply chain strategy, and service innovation determine long-term competitiveness

A strategic analysis of how 2025 tariff measures have reshaped procurement, supply chain localization, and vendor selection priorities across air separation projects

The introduction of significant tariff measures in 2025 has exerted a cumulative influence on capital procurement, vendor selection, and supply chain architecture for air separation plants, with effects that extend from equipment sourcing to project delivery timelines. Imported components such as cryogenic columns, specialized compressors, and membrane modules have seen elevated landed costs that reshape supplier evaluations and encourage procurement teams to prioritize locally manufactured alternatives or negotiate protective contractual clauses. Consequently, developers are increasingly incorporating tariff risk into procurement specifications and contingency planning, which has led to lengthened vendor qualification windows and a premium on suppliers with geographically diversified manufacturing footprints.

Moreover, the tariff environment has prompted strategic responses from project sponsors and equipment manufacturers alike. Some firms have accelerated nearshoring efforts and established regional assembly centers to mitigate import exposure, while others have reconfigured bill-of-materials to substitute higher-risk components with domestically sourced equivalents where feasible. End users have absorbed portions of cost increases through renegotiated service agreements or shifted toward onsite generation to reduce logistics-dependent exposures. Regulatory compliance and documentation requirements associated with tariff classifications have also increased administrative burdens, elevating the value of suppliers who offer clarity on origin, traceability, and customs support. In sum, the tariffs have catalyzed a reorientation toward supply chain resilience, localization, and contractual protections that will persist as risk management priorities

Comprehensive segmentation intelligence integrating product types, technology pathways, operation modes, capacity tiers, installation choices, and end-use industry imperatives

Segmentation-driven insights reveal how differentiated product types, technology platforms, operation modes, capacity tiers, installation choices, and end-use industries create distinct value pools and operational priorities. When viewed through product segmentation, primary gases such as oxygen, nitrogen, and argon remain the backbone of industrial applications, while rare gases like krypton, neon, and xenon serve specialized, high-value niches; this implies divergent procurement timelines and purity specifications that affect plant design and downstream handling. From the technology segmentation perspective, cryogenic air separation-available in double-column and single-column configurations-continues to dominate large-scale, high-purity requirements, whereas non-cryogenic approaches including membrane separation and pressure swing adsorption, with membrane subtypes of ceramic, hollow-fibre, and polymeric membranes, enable modular, lower-energy solutions for medium and small-scale applications.

Operation mode segmentation differentiates merchant supply chains from onsite generation strategies; merchant models emphasize logistics optimization and inventory management, while onsite systems prioritize reliability, footprint, and integration with onsite utilities. Capacity segmentation into large, medium, and small scales shapes capital intensity and flexibility, with small-scale units delivering faster deployment and lower capital lock-in, and large-scale plants offering economies of scale for base-load industrial consumers. Installation type-brownfield upgrades versus greenfield builds-influences permitting complexity, timeline, and the feasibility of integrating waste heat or renewable electricity. Finally, end-use industry segmentation highlights that chemical and petrochemical sectors prioritize continuous supply and large volumes, electronics and semiconductor markets demand ultra-high purity and trace contaminant control, food and beverage focus on food-grade specifications, healthcare requires fail-safe redundancy for medical oxygen, iron and steel prioritize on-site oxygen enrichment, oil and gas seek integrated gas management, and water treatment leverages oxygen-enhanced processes. Together, these segmentation perspectives inform tailored technology choices, procurement strategies, and service models for different stakeholder objectives

A regionally differentiated perspective on how Americas, Europe-Middle East-Africa, and Asia-Pacific dynamics influence technology adoption, localization, and demand composition

Regional dynamics exert a profound influence on technology adoption, supply chain design, regulatory exposure, and demand composition across the air separation ecosystem. In the Americas, established industrial clusters and a strong base of onsite and merchant providers drive a balanced adoption of cryogenic and non-cryogenic solutions, with particular emphasis on integration with decarbonization programs and modular onsite systems that reduce logistical risk. Across Europe, Middle East & Africa, regulatory stringency, energy transition policies, and infrastructure variability shape a fragmented landscape where high-purity demand in advanced manufacturing coexists with opportunities for brownfield modernization in legacy industrial zones. Policymakers and utilities in EMEA frequently influence project economics through incentive structures and grid decarbonization schedules, making regulatory engagement essential for project viability.

Asia-Pacific exhibits heterogeneous but pronounced growth dynamics, driven by rapid industrialization, expanded semiconductor capacity, and growing healthcare infrastructure, which collectively elevate demand for both primary and rare gases. Local supply chain development and localization strategies are particularly salient in this region as governments and industrial consortia prioritize domestic manufacturing resilience. Across all regions, differences in labor cost structures, permitting timelines, and utility pricing affect the optimal mix of cryogenic versus non-cryogenic technologies and the attractiveness of greenfield versus brownfield investments. Consequently, firms must adopt region-specific strategies that account for regulatory incentives, local supplier ecosystems, and end-user concentration to achieve operational and commercial objectives

Critical company-level strategic behaviors and partnerships that determine supplier differentiation, service models, and regional market penetration for air separation solutions

Company-level strategies are increasingly focused on technological differentiation, after-sales services, strategic alliances, and regional capacity expansion to capture evolving opportunities across the air separation sector. Leading equipment and solution providers are prioritizing investments in modular and non-cryogenic technologies to address faster deployment cycles and lower capital intensity for mid-scale applications, while also advancing cryogenic efficiency improvements for large-scale, high-purity installations. Service offerings are shifting from transactional maintenance to outcome-based contracts that bundle predictive maintenance, spare parts assurance, and performance guarantees, creating recurring revenue streams and closer customer relationships.

Partnerships and joint ventures are common tactical responses to demand for localization and market access; firms are forming regional manufacturing or assembly hubs, and entering collaborative R&D projects to accelerate membrane and compressor innovations. Companies that excel in documentation, compliance support, and supply chain traceability gain a competitive edge in tariff-impacted procurement environments. Additionally, digital platforms that aggregate performance data, enable remote diagnostics, and support lifecycle optimization are becoming differentiators in vendor selection. For stakeholders evaluating supplier ecosystems, priority should be given to firms demonstrating reliable delivery history, transparent total cost of ownership models, and clear roadmaps for technology upgrades and service continuity

Practical and prioritized strategic actions for executives to enhance supply chain resilience, optimize technology choices, and accelerate value realization in air separation projects

Industry leaders should pursue a set of actionable priorities to convert strategic insight into sustained operational advantage across procurement, technology, and service domains. First, diversify sourcing and accelerate nearshoring for high-risk components to reduce tariff exposure and shorten lead times, while negotiating long-term supply agreements that include price adjustment mechanisms and origin transparency. Second, align technology investments with end-use requirements by employing non-cryogenic, modular solutions for medium and small-scale needs and reserving cryogenic, multi-column plants for installations demanding continuous high-purity supply, thereby optimizing capital allocation and deployment speed.

Third, implement digital twin and predictive maintenance solutions to improve uptime and reduce lifecycle costs, and design service propositions that transition customers from capex-heavy models to outcome-based, performance-guaranteed contracts. Fourth, prioritize localization and brownfield modernization where regulatory incentives and logistics advantages exist, and structure project finance to account for tariff-related contingencies and permitting variabilities. Fifth, develop targeted commercial strategies for high-growth end uses such as semiconductors and healthcare that require specialized purity and reliability standards, and establish cross-functional teams to address regulatory compliance, environmental reporting, and stakeholder engagement. By sequencing these actions-starting with supply chain resilience, followed by targeted technology deployment, digital enablement, and market-specific commercial playbooks-leaders can reduce project risk and accelerate time-to-value

A transparent and reproducible research approach combining expert interviews, technical synthesis, scenario testing, and cross-validation to underpin actionable conclusions

The research methodology underpinning these insights combines structured primary engagement with domain experts, rigorous secondary evidence synthesis, and analytical triangulation to ensure robustness and actionable relevance. Primary inputs include interviews with plant operators, EPC contractors, original equipment manufacturers, technology developers, and end-user procurement leads to capture operational constraints, vendor performance experience, and technology adoption barriers. Secondary analysis draws on technical standards, regulatory documentation, patent activity, and publicly available project case studies to validate technology trajectories and historical implementation patterns.

Analytical steps include segmentation mapping across product, technology, operation mode, capacity, installation type, and end-use industry to ensure results are aligned with practical decision frameworks. Scenario analysis was applied to assess supply chain responses to tariff shocks and regional regulatory shifts, and sensitivity checks were used to test assumptions related to equipment lead times, component substitutability, and service model adoption. Findings were cross-validated through peer review with independent technical specialists and iterative feedback from industry participants to refine conclusions and ensure recommendations are operationally grounded

A strategic synthesis reaffirming that technology flexibility, supply chain resilience, and service innovation will determine long-term success in the air separation sector

In conclusion, the air separation plant landscape is transitioning from a paradigm defined primarily by scale economies toward one where technology flexibility, supply chain resilience, and service-driven models determine long-term competitiveness. Primary gases will continue to underpin broad industrial activity while rare gases will expand in strategic niches that demand high purity and traceability. Technology choice will increasingly be governed by a blend of energy efficiency, deployment speed, and integration capability with electrified or renewable power sources, making non-cryogenic and modular configurations more attractive for many use cases.

The cumulative effect of recent tariff developments and regional policy shifts is to elevate localization, contractual clarity, and supplier diversification as core risk mitigation strategies. Firms that couple targeted investments in membrane and compressor innovations with digital service platforms and region-specific commercial playbooks will be best positioned to capture value. Ultimately, success in this evolving environment depends on aligning technical decisions with end-user requirements, regulatory landscapes, and pragmatic supply chain strategies to deliver resilient, efficient, and dependable gas supply solutions

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Adoption of advanced membrane separation technologies to improve energy efficiency in air separation plants
  • 5.2. Implementation of digital twin and predictive analytics for optimized air separation unit performance and maintenance
  • 5.3. Deployment of modular and skid-mounted air separation units for rapid installation at remote industrial sites
  • 5.4. Integration of renewable power sources and green hydrogen production within air separation facilities to lower emissions
  • 5.5. Utilization of cryogenic heat recovery systems to reduce operational costs and enhance process sustainability in air separation
  • 5.6. Expansion of on-site nitrogen and oxygen generation solutions for medical and food-grade applications under strict purity standards
  • 5.7. Strategic partnerships between air separation plant operators and industrial gas suppliers to secure long-term supply agreements

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Air Separation Plant Market, by Product

  • 8.1. Introduction
  • 8.2. Primary Gases
    • 8.2.1. Argon
    • 8.2.2. Nitrogen
    • 8.2.3. Oxygen
  • 8.3. Rare Gases
    • 8.3.1. Krypton
    • 8.3.2. Neon
    • 8.3.3. Xenon

9. Air Separation Plant Market, by Technology

  • 9.1. Introduction
  • 9.2. Cryogenic Air Separation
    • 9.2.1. Double-column Cryogenic
    • 9.2.2. Single-column Cryogenic
  • 9.3. Non-cryogenic Air Separation
    • 9.3.1. Membrane Separation
      • 9.3.1.1. Ceramic Membranes
      • 9.3.1.2. Hollow-fibre Membranes
      • 9.3.1.3. Polymeric Membranes
    • 9.3.2. Pressure Swing Adsorption

10. Air Separation Plant Market, by Operation Mode

  • 10.1. Introduction
  • 10.2. Merchant
  • 10.3. Onsite

11. Air Separation Plant Market, by Capacity

  • 11.1. Introduction
  • 11.2. Large Scale
  • 11.3. Medium Scale
  • 11.4. Small Scale

12. Air Separation Plant Market, by Installation Type

  • 12.1. Introduction
  • 12.2. Brownfield
  • 12.3. Greenfield

13. Air Separation Plant Market, by End Use Industry

  • 13.1. Introduction
  • 13.2. Chemical & Petrochemical
  • 13.3. Electronics & Semiconductor
  • 13.4. Food & Beverage
  • 13.5. Healthcare & Medical
  • 13.6. Iron & Steel Manufacturing
  • 13.7. Oil & Gas
  • 13.8. Water & Wastewater Treatment

14. Americas Air Separation Plant Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Air Separation Plant Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Air Separation Plant Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. AMCS Corporation
    • 17.3.2. Nikkiso Clean Energy & Industrial Gases Group
    • 17.3.3. Comi Polaris Systems
    • 17.3.4. CRYOSPAIN, S.L.
    • 17.3.5. Hangzhou Azbel Technology Co., Ltd.
    • 17.3.6. Hangzhou Fortune Gas Cryogenic Group Co., Ltd.
    • 17.3.7. Hangzhou Nuzhuo Technology Co., Ltd.
    • 17.3.8. Hangzhou Oxygen Group Co., Ltd.
    • 17.3.9. INOX-Air Products Inc.
    • 17.3.10. Jilin Hangairsep Co., Ltd.
    • 17.3.11. Kaifeng Air Separation Group Co., Ltd.
    • 17.3.12. KROHNE Group
    • 17.3.13. L'AIR LIQUIDE S.A.
    • 17.3.14. Linde PLC
    • 17.3.15. Messer Group
    • 17.3.16. Nikkiso Co., Ltd.
    • 17.3.17. Novair Group
    • 17.3.18. Ranch Cryogenics, Inc.
    • 17.3.19. Sanghi Oxygen PVT.LTD,
    • 17.3.20. SIAD Macchine Impianti S.p.A.
    • 17.3.21. Sichuan Air Separation Plant Group
    • 17.3.22. Siemens AG.
    • 17.3.23. Sinerga SpA
    • 17.3.24. Suzhou Oxygen Plant Co., Ltd.
    • 17.3.25. Taiyo Nippon Sanso Corporation
    • 17.3.26. Technex Group
    • 17.3.27. Universal Industrial Gases, Inc.
    • 17.3.28. Universal Ing. La. Boschi Plants Pvt. Ltd.
    • 17.3.29. Wobo Industrial Group Corp.
    • 17.3.30. Yingde Gases Group Company Limited
    • 17.3.31. Zhejiang Yuanda Air Separation Equipment Co., Ltd.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix