產業用AI市場:2025-2030年
市場調查報告書
商品編碼
1775080

產業用AI市場:2025-2030年

Industrial AI Market Report 2025-2030

出版日期: | 出版商: IoT Analytics GmbH | 英文 400 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

這份長達400頁的報告是IoT Analytics持續進行的智慧製造和人工智慧研究的一部分,全面涵蓋了工業人工智慧市場的現狀,包括詳細的市場規模、預測、供應商市場佔有率、關鍵趨勢、用例和採用統計數據。

本報告基於多項調查、二手資料研究和定性研究,包括對專家和最終用戶的訪談。報告涵蓋了工業人工智慧及相關領域(例如邊緣人工智慧、機器人人工智慧和生成式人工智慧)的定義、市場預測、採用推動因素、競爭格局、關鍵趨勢和發展以及案例研究。

本報告是IoT Analytics針對工業人工智慧及相關領域(例如預測性維護、機器視覺和機器人、數位孿生和邊緣人工智慧)所進行的系列研究的第三份。

預覽




預覽




報告重點:

  • 市場規模及預測:技術棧(硬體、軟體、服務)按人工智慧類型、產業、地區和前五大國家細分的詳細市場模型,並預測到2030年。
  • 競爭激烈格局:詳細分析 15 家最大供應商和 30 多家新進業者的市佔率。
  • 用例與採用分析:深入探討 10 個類別的 48 個關鍵用例,從最終用戶的角度分析採用的推動因素和障礙。
  • 策略洞察:回顧 21 個關鍵市場趨勢和塑造工業 AI 產業的六大課題。
  • 技術深度探究:深入分析生成式 AI、基於代理的 AI、邊緣 AI 以及機器人 AI。
  • 深入研究:六個詳細的用例和四次深入研究領先製造商的 AI 策略。

本報告包含 Excel 格式的完整市場模型資料、670 家工業 AI 供應商的 Excel 清單以及工業 AI 專案清單(僅限團隊使用者和企業進階許可證)。它附帶一個。

精選公司:

從本報告提及的 670 家公司中精選

  • AMD
  • AWS
  • Accenture
  • Alibaba
  • Capgemini
  • Dell Technologies
  • Deloitte
  • Foxconn
  • Google Cloud
  • Infosys
  • Microsoft
  • NVIDIA
  • Siemens
  • Supermicro
  • TCS

目錄

第1章 摘要整理

第二章 簡介

  • 分析類型與人工智慧的作用:概述
  • 本報告重點:工業人工智慧
  • 理解人工智慧:非工業人工智慧解決方案 vs. 工業人工智慧解決方案
  • 通用人工智慧和工業人工智慧的發展歷程
  • 對工業人工智慧日益增長的興趣:全球工業人工智慧搜尋量
  • 對工業人工智慧日益增長的興趣:供應商評論
  • 對工業人工智慧感興趣的背景:使用者評價
  • 對工業人工智慧感興趣的背景:人工智慧在製造業中的作用
  • 範例:一家大型汽車製造商的工業人工智慧零件供應商

第三章:技術概述

  • 章節概述:技術概述
  • 工業 AI 採用流程 - 流程概述
  • 工業 AI 採用流程 - 主題概述
  • 深入探討 1:確定 AI 商業價值的通用框架
  • 深入探討 2:AI 系統需求
  • 深入探討 3:AI 晶片
  • 深入探討 4:建構與購買 AI 解決方案
  • 深入探討 5:資料管理
  • 深入探討 6:資料擷取與準備
  • 深入探討 7:模型發展與訓練
  • 深入探討 8:機器學習維

第四章 市場規模與展望

  • 章節概況:市場規模與展望
  • 概述2025年工業人工智慧市場的推動因素與阻礙因素
  • 工業人工智慧市場:包含因素與排除因素
  • 全球工業人工智慧市場:整體情況
  • 數據視角:美國製造商在人工智慧上的平均支出
  • 全球工業人工智慧市場:依技術堆疊劃分
  • 全球工業人工智慧市場:以人工智慧類型劃分
  • 全球工業人工智慧市場:按託管類型劃分的訓練
  • 全球工業人工智慧市場:按託管類型劃分的推理
  • 全球工業人工智慧市場:用例
  • 產業劃分的全球工業人工智慧市場
  • 以ISIC代碼劃分的離散製造人工智慧市場
  • 以ISIC代碼劃分的混合製造人工智慧市場
  • 依ISIC代碼劃分的流程製造人工智慧市場
  • 地區劃分的全球增強型工業人工智慧市場
  • 國家劃分的東亞和太平洋地區工業人工智慧市場
  • 國家劃分的歐洲和中亞地區工業人工智慧市場
  • 地區劃分的北美工業人工智慧市場國家/地區
  • 中東和北非地區工業 AI 市場(按國家劃分)
  • 拉丁美洲和加勒比海地區工業 AI 市場(按國家/地區劃分)
  • 南亞地區工業 AI 市場(按國家/地區劃分)
  • 全球工業 AI 市場:前 10 個國家與產業(2024 年)
  • 中國的產業用AI市場:全體
  • 中國的產業用AI市場:技術堆疊
  • 中國的產業用AI市場:各產業
  • 中國的產業用AI市場:使用案例
  • 美國的產業用AI市場:全體
  • 美國的產業用AI市場:技術堆疊
  • 美國的產業用AI市場:各產業
  • 美國的產業用AI市場:使用案例
  • 德國的產業用AI市場:全體
  • 德國的產業用AI市場:技術堆疊
  • 德國的產業用AI市場:各產業
  • 德國的產業用AI市場:使用案例
  • 日本的產業用AI市場:全體
  • 日本的產業用AI市場:技術堆疊
  • 日本的產業用AI市場:各產業
  • 日本的產業用AI市場:使用案例
  • 韓國的產業用AI市場:全體
  • 韓國的產業用AI市場:技術堆疊
  • 韓國的產業用AI市場:各產業
  • 韓國的產業用AI市場:使用案例

第5章 競爭情形

  • 章節概況:競爭格局
  • 公司格局:供應商分類
  • 研究方法:
  • 範例:本報告如何描述 NVIDIA 的 2024 年收入
  • 公司版圖:公司資料庫
  • 前 15 家工業 AI 供應商:概述
  • 2024 年競爭格局:按技術堆疊劃分的市場佔有率概覽
  • 工業 AI 硬體:處理器市場佔有率
  • 工業AI 軟體:如何理解競爭格局
  • 工業 AI 服務:市場佔有率

第6章 使用案例

  • 章節概述:用例
  • 關鍵工業 AI 用例:2024 年工業 AI 市場佔有率
  • 關鍵工業 AI 用例:定義
  • 用例 1:自動光學檢測
  • 用例 1:自動光學檢測案例研究
  • 用例 2:單一資產預測性維護
  • 用例 2:單一資產預測性維護 - 案例研究
  • 用例 3:自主機器/機器人
  • 用例 3:自主機器/機器人 - 案例研究
  • 用例 4:網路安全威脅偵測
  • 用例 5:系統/工廠範圍的預測性維護
  • 用例 6:監控和物理威脅偵測
  • 用例 6:監控和物理威脅偵測 - 案例研究
  • 用例 7:自動非光學故障偵測
  • 用例 8:生產優化
  • 用例 9:路線最佳化和調度
  • 用例 9:路線最佳化和調度 - 案例研究
  • 用例 10:自主物流系統
  • 用例 10:自主物流系統 (ALS) - 案例研究
  • 其他值得關注的案例研究
  • 其他值得關注的案例研究:生成式人工智慧

第7章 生成AI和代理商AI

  • 章概要:生成AI和代理商AI
  • 530件生成AI計劃的分析:概要
  • 530件生成AI計劃的分析:各部門
  • 530件生成AI計劃的分析:各部門及活動
  • 530件生成AI計劃的分析:各產業
  • 530件生成AI計劃的分析:各產業·各部門
  • 530 個生成式人工智慧專案分析:跨越鴻溝
  • 如何將生成式人工智慧應用貨幣化
  • 產業用代理商AI:概要
  • 產業用代理商AI:模式情境(脈絡)通訊協定 (MCP) - 概要
  • 產業用代理商AI:模式情境(脈絡)通訊協定 (MCP) - 引進
  • 工業智能體 AI:MCP - 範例
  • 工業智能體 AI:未來願景 - 1. 凱睿德製造
  • 工業智能體 AI:未來願景 - 2. 西門子
  • 工業智能體 AI:未來願景 - 3. Mendix
  • 工業智能體 AI:智能體工作流程 - 範例
  • 工業生成式 AI 與智能體 AI 的趨勢
  • 工業生成式 AI/智慧體 AI 解決方案 - 概述
  • 工業生成式 AI/智慧體 AI 解決方案 - #2 Engineering Orchestrator
  • 工業生成式 AI/智慧體 AI 解決方案 - Microsoft AI Agents
  • 工業生成式 AI/智能體 AI 解決方案 - 西門子 IFM
  • 工業生成式 AI/智慧體 AI 解決方案 - ABB Genix Copilot

第8章 邊緣AI

  • 章節概要:邊緣 AI
  • 邊緣 AI:概述
  • 什麼是邊緣 AI?
  • 邊緣 AI 為何重要? :為什麼要在邊緣部署 AI?
  • 邊緣AI架構:概述
  • 邊緣AI架構:範例
  • 邊緣AI架構:邊緣AI流程中的各個階段
  • 關鍵邊緣AI技術:概述
  • 關鍵邊緣AI技術:1. 微邊緣AI加速器
  • 關鍵邊緣AI技術:2. 薄邊緣AI加速器
  • 關鍵邊緣AI技術:3. 邊緣AI開發平台
  • 關鍵邊緣AI技術:4. 微型機器學習
  • 關鍵邊緣AI技術:5. 邊緣學習
  • 關鍵邊緣AI技術:6. 視覺語言模式 (VLM)
  • 關鍵邊緣AI技術:7. 聯邦學習
  • 工業邊緣AI趨勢

第9章 機器人技術的AI

  • 章節概述:機器人中的AI
  • NVIDIA和Google準備將機器人技術打造為下一個重大突破
  • 基於AI的模型帶來機器人的泛化與自主性
  • 概述:工業機器人原始設備製造商的關鍵人工智慧主題
  • 機器人人工智慧的主要用例
  • 主要機器人原始設備製造商的人工智慧配置
  • 趨勢
  • 人工智慧應用策略:概述

第10章 主要製造商的AI策略

  • Toyota Motor Corporation:策略概要
  • Trumpf:策略概要
  • Georgia-Pacific:策略概要

第11章 終端用戶的洞察

  • 章節概要:最終使用者洞察
  • 最終用戶洞察:四項研究概述
  • 工業人工智慧研究 #1:關鍵洞察
    • 關鍵工業應用中的人工智慧應用現狀
    • 未來各種工業人工智慧用例的重要性
    • 未來的訓練與執行(推理)工業 AI 的應用場景
  • 產業用AI研究#2:主要的洞察
    • AI 在故障排除/維護中的價值:概述
    • AI 在故障排除/維護中的價值:以行業
  • 產業用AI研究#3:主要的洞察
    • 工業 AI 的採用和擴展計劃
    • 工業 AI 的優勢
    • 工業 AI 的優勢:為工人帶來的好處
    • 無法支援 AI 的設備
    • AI 課題及相應的緩解措施
  • 工業 AI 研究 #4:關鍵洞察
    • 工業 AI Copilot 與 AI 代理
    • 按應用領域劃分的工業 AI 採用情況
    • 工業 AI 採用的類型
    • 工業 AI 的障礙應用
    • 解決工業 AI 技能差距的計劃
    • 按應用領域劃分的工業 AI 投資計劃

第12章 促進因素,趨勢,課題

  • 傾向
  • 課題
  • 其他主要課題

第13章 調查手法·市場定義

第14章 關於IoT Analytics

簡介目錄

A 400-page report on the current state of the industrial AI market, including detailed market sizing, forecasts, vendor market shares, key trends, use cases, adoption statistics, and more.

The "Industrial AI Market Report 2025-2030" is part of IoT Analytics' ongoing coverage of smart manufacturing and AI topics. The information presented in this report is based on the results of multiple surveys, secondary research as well as qualitative research i.e., interviews with experts and end users in the field. The document includes definitions for industrial AI and related topics (Edge AI, AI in robotics, Generative AI), market projections, adoption drivers, competitive landscapes, key trends and developments, and case studies.

This report is the third installment of our dedicated research coverage on industrial AI and related topics, including predictive maintenance, machine vision & robotics, digital twin, and edge AI.

PREVIEW




Questions answered:

  • What is industrial AI (i.e., an industrial AI definition)?
  • Which technologies are used for implementing industrial AI projects (including hardware and software deep-dive)?
  • What is the current industrial AI market size and its forecast (by sub-markets, regions, technologies, industries)?
  • Who are the key industrial AI vendors and what are their market shares?
  • What are the 50 most common industrial AI use cases?
  • What is the perspective of industrial AI end users? What are the factors that facilitate or limit adoption?
  • How are selected manufacturers adopting industrial AI and what are the details of representative case studies?
  • How do manufacturers adopt generative AI, edge AI and agentic AI?
  • What are the key trends & challenges in industrial AI space?

PREVIEW




The main purpose of this document is to help our readers understand the current industrial AI landscape by defining, sizing and analyzing the market.

The Industrial AI Market Report 2025-2030

The global industrial AI market, a multi-billion dollar market in 2024, is forecast to experience significant double-digit growth through 2030. This report delivers market data and insights helping decisions makers navigate through the market landscape.

Report highlights:

  • Market sizing & forecasts: A detailed market model and forecast to 2030, segmented by tech stack (hardware, software, services), AI type, industry, region, and by top five countries.
  • Competitive landscape: In-depth analysis of the 15 largest vendors with market shares and 30+ upcoming companies.
  • Use case & adoption analysis: Deep dive into 48 key use cases across 10 categories, enriched with end-user perspectives on adoption drivers and barriers.
  • Strategic insights: A review of 21 key market trends and 6 challenges shaping the industrial AI space.
  • Technology deep dives: Dedicated chapters providing in-depth analyses of Generative AI & Agentic AI, Edge AI, and AI in Robotics.
  • In-depth studies: Features 6 detailed use case studies and 4 deep dives into the AI strategies of leading manufacturers.

The market report comes with the full market model data in EXCEL, a list of 670 industrial AI vendor in EXCEL, and a list of industrial AI projects (only team user and enterprise premium license).

What is industrial AI?

Definition of AI

AI (Artificial Intelligence) is defined as machine driven intelligent behavior that involves the ability to acquire and apply knowledge.

AI consists of an analytics (learning) and an outcome (action/decision/prediction) component:

  • 1. Analytics corresponds to the data management processes and data science algorithms through which the device learns.
  • 2. Outcome corresponds to the intelligent behavior, e.g., generating a decision, a prediction, or triggering an action.

Definition of industrial AI

Industrial AI is defined as the application of AI techniques to data generated by operational technology and engineering systems in asset-heavy sectors, optimizing industrial processes at any stage of the product and asset lifecycle.

  • Operational technology and engineering systems: Control, monitoring, and design platforms that generate real-time and engineering data about physical assets (e.g., PLC, SCADA networks, sensors, CAD/CAE suites, and PLM tools)
  • Asset-heavy sectors: Industries whose business relies on extensive physical infrastructure and equipment (e.g., discrete and process manufacturing, energy, chemicals, mining, and transportation)
  • Industrial processes: Technical workflows that create, move, or sustain physical goods and assets (e.g., product design, manufacturing, maintenance, logistics, field service)

Companies mentioned:

A selection from 670 companies mentioned in the report.

  • AMD
  • AWS
  • Accenture
  • Alibaba
  • Capgemini
  • Dell Technologies
  • Deloitte
  • Foxconn
  • Google Cloud
  • Infosys
  • Microsoft
  • NVIDIA
  • Siemens
  • Supermicro
  • TCS

Table of Contents

1. Executive Summary

  • List of scope or coverage changes compared to the 2021 Industrial AI Market Report
  • Chapter overview: Introduction
  • Understanding AI: Definition and components
  • Understanding AI: Key types and their differences
  • Types of ML: Overview
  • Types of ML: Examples
  • Categories of AI: Overview

2. Introduction

  • Types of analytics and role of AI: Overview
  • Focus of this report: Industrial AI
  • Understanding AI: Non-industrial vs. industrial AI solutions
  • General and industrial AI timeline: from 1960 to 2024
  • Industrial AI interest in context: Global searches for industrial AI
  • Industrial AI interest in context: Vendors' quotes
  • Industrial AI interest in context: Users' quotes
  • Industrial AI interest in context: Role of AI for manufacturers
  • Case in point: Industrial AI at a large automotive supplier

3. Technology overview

  • Chapter overview: Technology overview
  • The industrial AI implementation process - Process overview
  • The industrial AI implementation process - Topics overview
  • Deep dive 1: Common frameworks to determine AI business value
  • Deep Dive 2: AI system requirements
  • Deep Dive 3: AI chips
  • Deep Dive 4: Build versus buying AI solutions
  • Deep Dive 5: Data management
  • Deep Dive 6: Ingest & prepare data
  • Deep Dive 7: Develop & train models
  • Deep Dive 8: ML Ops

4. Market size and outlook

  • Chapter overview: Market size and outlook
  • General drivers and inhibitors for the industrial AI market 2025
  • Industrial AI market: What is included and what is not
  • Global industrial AI market: Overall
  • Data in perspective: What the average U.S. manufacturer spends on AI
  • Global industrial AI market: By tech stack
  • Global industrial AI market: By AI type
  • Global industrial AI market: Training by hosting type
  • Global industrial AI market: Inference by hosting type
  • Global industrial AI market: By use case
  • Global industrial AI market: By industry
  • Discrete manufacturing industrial AI market: By ISIC code
  • Hybrid manufacturing industrial AI market: By ISIC code
  • Process manufacturing industrial AI market: By ISIC code
  • Global extended industrial AI market: By region
  • East Asia & Pacific industrial AI market: By country
  • Europe & Central Asia industrial AI market: By country
  • North America industrial AI market: By country
  • Middle East & North Africa industrial AI market: By country
  • Latin America & Caribbean industrial AI market: By country
  • South Asia industrial AI market: By country
  • Global industrial AI market: By top 10 countries and industry (2024)
  • China industrial AI market: Overall
  • China industrial AI market: By tech stack
  • China industrial AI market: By industry
  • China industrial AI market: By use case
  • USA industrial AI market: Overall
  • USA industrial AI market: By tech stack
  • USA industrial AI market: By industry
  • USA industrial AI market: By use case
  • Germany industrial AI market: Overall
  • Germany industrial AI market: By tech stack
  • Germany industrial AI market: By industry
  • Germany industrial AI market: By use case
  • Japan industrial AI market: Overall
  • Japan industrial AI market: By tech stack
  • Japan industrial AI market: By industry
  • Japan industrial AI market: By use case
  • South Korea industrial AI market: Overall
  • South Korea industrial AI market: By tech stack
  • South Korea industrial AI market: By industry
  • South Korea industrial AI market: By use case

5. Competitive landscape

  • Chapter overview: Competitive landscape
  • Company landscape: Vendor classifications
  • Methodology: How individual companies were analyzed
  • Example: How this report accounts for NVIDIA 2024 revenues
  • Company landscape: Company database
  • The 15 largest industrial AI vendors: Overview
  • Competitive landscape 2024: Market share overview by tech stack
  • 1. Industrial AI hardware: Processors - Market share
    • Industrial AI hardware: Processors - NVIDIA
    • Industrial AI hardware: Computing systems - Market share
  • 2. Industrial AI software: How to think about the comp. landscape
    • Industrial AI software: Platforms - Market share
    • Industrial AI software: Platforms - Microsoft
    • Industrial AI software: Platforms - AWS
    • Industrial AI software: Platforms - Upcoming companies
    • Industrial AI software: AI-native Applications - Vision/Inspection
    • Industrial AI software: AI-native Applications - Maintenance
    • Industrial AI software: AI-native Applications - Others
    • Industrial AI software: AI-native Applications - Value prop.
    • Industrial AI software: AI-native Apps - Value prop.
    • Industrial AI software: AI-native Applications - Value prop.
  • 3. Industrial AI services: Market share
    • Industrial AI services: Accenture
    • Industrial AI services: Accenture - AI agent showcase
    • Industrial AI services: Capgemini
    • AI Libraries

6. Use cases

  • Chapter overview: Use cases
  • Main industrial AI use cases: Share of industrial AI market 2024
  • Main industrial AI use cases: Definitions
  • Use case 1: Automated optical inspection
  • Use case 1: Automated optical inspection - Case study
  • Use case 2: Predictive maintenance of single assets
  • Use case 2: Predictive maintenance of single assets - Case study
  • Use case 3: Autonomous machines/robots
  • Use case 3: Autonomous machines/robots - Case study
  • Use case 4: Cybersecurity threat detection
  • Use case 5: Predictive maintenance of complete systems/plants
  • Use case 6: Surveillance and physical threat detection
  • Use case 6: Surveillance and physical threat detection - Case study
  • Use case 7: Automated non-optical fault detection
  • Use case 8: Production optimization
  • Use case 9: Route optimization and scheduling
  • Use case 9: Route optimization and scheduling - Case study
  • Use case 10: Autonomous logistics systems
  • Use case 10: Autonomous logistics systems (ALSs) - Case study
  • Other notable case studies
  • Other notable case studies: Focus - Generative AI

7. Generative AI and Agentic AI

  • Chapter overview: Generative AI and Agentic AI
  • This chapter looks at GenAI & agentic AI through 5 lenses
  • Analysis of 530 GenAI projects: Overview
  • Analysis of 530 GenAI projects: By Department
  • Analysis of 530 GenAI projects: By department and activity
  • Analysis of 530 GenAI projects: By industry
  • Analysis of 530 GenAI projects: By industry and department
  • Analysis of 530 GenAI projects: Crossing the chasm
  • How to monetize GenAI applications
  • Industrial agentic AI: Overview
  • Industrial agentic AI: Model context protocol (MCP) - Overview
  • Industrial agentic AI: Model context protocol (MCP) - Adoption
  • Industrial agentic AI: MCP - Example
  • Industrial agentic AI: Future vision - 1. Critical manufacturing
  • Industrial agentic AI: Future vision - 2. Siemens
  • Industrial agentic AI: Future vision - 3. Mendix
  • Industrial agentic AI: Agentic workflow - Example
  • Industrial GenAI & agentic AI trend
  • Industrial GenAI/agentic AI solutions - Overview
  • Industrial GenAI/agentic AI solutions - #2 Engineering Orchestrator
  • Industrial GenAI/agentic AI solutions - Microsoft's AI agents
  • Industrial GenAI/agentic AI solutions - Siemens IFM
  • Industrial GenAI/agentic AI solutions - ABB Genix Copilot

8. Edge AI

  • Chapter overview: Edge AI
  • Edge AI: Overview
  • What is edge AI?
  • Why edge AI matters?: Reasons for AI coming to the edge
  • Edge AI architectures: Overview
  • Edge AI architectures: Example
  • Edge AI architectures: Stages of edge AI processing
  • Key edge AI technologies: Overview
  • Key edge AI technologies: 1. AI accelerators at the micro edge
  • Key edge AI technologies: 2. AI accelerators at the thin edge
  • Key edge AI technologies: 3. Edge AI development platforms
  • Key edge AI technologies: 4. Tiny Machine Learning
  • Key edge AI technologies: 5. Edge learning
  • Key edge AI technologies: 6. Vision-language models (VLM)
  • Key edge AI technologies: 7. Federated learning
  • Industrial Edge AI Trend

9. AI in robotics

  • Chapter overview: AI in robotics
  • NVIDIA and Google are making robotics the next big thing
  • AI foundation models bring generalization and autonomy to robots
  • Overview: Key AI topics for industrial robot OEMs
  • Key robot AI use cases
  • AI setup of leading robot OEMs
  • Trend
  • AI adoption strategies: Overview

10. AI strategies of select manufacturers

  • 1. Toyota Motor Corporation: Strategy overview
    • Toyota Motor Corporation: Toyota Research Institute
    • Toyota Motor Corporation: Overall manufacturing vision
    • Toyota Motor Corporation: Overall manufact. vision - AI role
    • Toyota Motor Corporation: Toyota Ventures portfolio
    • Toyota Motor Corporation: Key AI partnerships & investments
  • 2. Trumpf: Strategy overview
    • Trumpf: Venture investments with a focus on AI
    • Trumpf: Key AI partnerships & investments
    • Trumpf: Customer-facing AI applications developed by Trumpf
  • 3. Georgia-Pacific: Strategy overview
    • Georgia-Pacific: AI-implementation projects
    • Georgia-Pacific: AI-implementation projects - Key results

11. End user insights

  • Chapter overview: End user insights
  • End-user insights: Overview of the 4 surveys
  • Industrial AI Survey #1: Key Insights
    • Adoption status of AI in key industrial applications
    • Importance of various industrial AI use cases going forward
    • Future training and execution (inference) locations for industrial AI
  • Industrial AI Survey #2: Key Insights
    • Value of AI for troubleshooting/maintenance: Overview
    • Value of AI for troubleshooting/maintenance: By industry
  • Industrial AI Survey #3: Key Insights
    • Industrial AI adoption and plans to expand its use
    • Benefits of industrial AI
    • Benefits of industrial AI: Benefits for workers
    • Non-AI compatible equipment
    • AI challenges and corresponding mitigation actions
  • Industrial AI Survey #4: Key Insights
    • Industrial AI copilots vs. AI agents
    • Adoption of industrial AI by application area
    • Type of industrial AI deployed
    • Barriers for industrial AI adoption
    • Plans to address the industrial AI skills gap
    • Investments plans for industrial AI by application area

12. Drivers, trends and challenges

  • Trend
  • Challenge
  • Other key challenges

13. Methodology and market definitions

  • Research methodology
  • Definitions of AI types
  • Definitions of the tech stack
  • Industry mappings to ISIC codes
  • Survey questions

14. About IoT Analytics

  • About IoT Analytics
  • Other publications by IoT Analytics
  • Information and contact