![]() |
市場調查報告書
商品編碼
1875880
全球地理空間分析市場Geospatial Analytics |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
全球地理空間分析市場預計到2030年將達到2,329億美元。
全球地理空間分析市場規模在2024年估計為1,170億美元,預計到2030年將達到2,329億美元,在分析期間(2024-2030年)內複合年成長率(CAGR)為12.2%。本報告分析的細分市場之一「地面和現場分析」預計將以13.8%的複合年成長率成長,並在分析期結束時達到1084億美元。同時,「網路和位置分析」細分市場預計在分析期間內將以10.7%的複合年成長率成長。
美國市場規模估計為324億美元,而中國市場預計將以11.3%的複合年成長率成長。
預計2024年,美國地理空間分析市場規模將達324億美元。作為世界第二大經濟體,中國預計到2030年市場規模將達到354億美元,在2024年至2030年的分析期間內,複合年成長率(CAGR)將達到11.3%。其他值得關注的區域市場包括日本和加拿大,預計在分析期內,這兩個市場的複合年成長率將分別達到10.9%和9.8%。在歐洲,德國的複合年成長率預計將達到約8.5%。
全球地理空間分析市場-主要市場趨勢與促進因素概述
為什麼地理空間分析正在徹底改變各行業的決策方式
地理空間分析正在革新各產業收集、分析和利用位置資料的方式,從而助力城市規劃、農業、物流和國防等領域做出更明智的決策。那麼,地理空間分析為何在當今如此重要?地理空間分析利用地理資訊系統 (GIS)、遙感探測和全球定位系統 (GPS) 等技術,收集、處理和視覺化與特定地理位置相關的資料。透過分析空間關係和模式,我們可以深入了解物理環境、人類行為和自然現象,使其成為最佳化營運、改善資源管理和解決複雜問題的強大工具。
例如,在城市規劃中,地理空間分析能夠幫助城市進行智慧基礎設施設計、交通流量管理和資源高效配置。在農業領域,整合氣象資料和土壤狀況訊息,可以幫助農民監測作物生長、最佳化用水並提高產量預測的準確性。在物流領域,地理空間分析用於最佳化配送路線、管理車隊和降低運輸成本。在國防和安全領域,它能夠為戰略行動提供即時監控和情境察覺。憑藉其透過空間資料視覺化提供可操作洞察的能力,地理空間分析正變得日益成為企業、政府和組織提升效率、永續性和改進決策的關鍵技術。
科技進步如何拓展地理空間分析的能力?
技術創新顯著拓展了地理空間分析的功能和應用範圍,提高了其在各行各業的準確性、可及性和影響力。其中一項最重要的創新是將衛星、無人機和感測器等先進數據採集技術整合到地理空間系統中。這些工具能夠將高解析度的即時資料傳輸到地理空間系統,從而實現更精確、更動態的分析。例如,無人機正在革新農業資料收集方式,透過拍攝詳細的田間影像來監測作物健康狀況、識別病蟲害並評估用水量。衛星則提供了全球觀點,為追蹤氣候變遷、森林砍伐和城市擴張等問題提供了關鍵資訊。
另一項重大進展是將巨量資料和機器學習演算法應用於地理空間分析。這些技術能夠處理來自多個來源的大量空間數據,並揭示人工難以發現的模式和趨勢。透過分析歷史地理空間資料和即時輸入,機器學習模型可以進行訓練,從而預測交通堵塞、作物產量和災害風險等結果。例如,在城市規劃中,機器學習演算法可以分析交通模式並預測新基礎設施計劃的影響,從而幫助決策者做出更明智的決策。此外,巨量資料還能夠將人口統計、經濟指標和社群媒體活動等非空間資料整合到地理空間模型中,從而更全面地了解影響地理趨勢的因素。
雲端運算的興起也正在改變地理空間分析,使其更具擴充性,並惠及各種規模的企業和政府機構。諸如 Google Earth Engine 和 Esri 的 ArcGIS雲端基礎平台使組織無需昂貴的硬體即可儲存和處理大型資料集。這使得用戶可以隨時隨地存取地理空間分析工具並進行即時協作,從而普及了強大的基於位置的洞察。雲端運算也提高了近即時分析地理空間資料的能力,這對於物流等產業至關重要,因為及時的資訊可能決定著企業的盈虧。
此外,人工智慧 (AI) 和預測分析技術的進步正在拓展地理空間分析的潛力。 AI 演算法分析地理空間數據,以提高自然災害預測、供應鏈最佳化、土地利用管理等領域的預測模型的準確性。預測分析工具使組織能夠預測未來趨勢和狀況,並採取預防措施。例如,AI 驅動的地理空間分析可以透過分析歷史火災資料、植被狀況和天氣模式來預測野火風險。這些進步使地理空間分析更加動態和實用,使其成為解決各行各業複雜挑戰的關鍵工具。
為什麼地理空間分析對於提高營運效率、永續性和安全性至關重要?
地理空間分析對於提升營運效率、促進永續性和增強安全性至關重要,它能夠提供精準的、基於位置的洞察,從而最佳化資源配置、減少廢棄物並改善決策。例如,在物流領域,地理空間分析被用於最佳化配送路線、追蹤車輛行駛軌跡以及即時監控交通狀況。透過分析空間數據,企業可以最大限度地降低油耗、縮短配送時間並提升整體營運效率。這對電子商務公司而言尤其重要,因為快速且經濟高效的配送是提升客戶滿意度的關鍵。
在農業領域,地理空間分析協助精密農業,提供數據驅動的洞察,幫助農民更有效率地管理資源。透過分析衛星影像、天氣模式和土壤狀況,農民可以確定播種、灌溉和收穫的最佳時間,從而提高產量並減少水肥用量。這不僅提高了農業生產的經濟效益,也促進了更永續的農業實踐。遠端監控大規模農業生產的能力減少了人力和實地巡查的需求,進一步提高了營運效率。
地理空間分析對於環境監測和保護工作至關重要。各國政府和環保組織利用地理空間工具追蹤森林砍伐、監測野生動物棲息地並有效率地管理自然資源。透過可視化土地利用和自然環境隨時間的變化,可以改善土地保護和環境保護的決策。例如,在林業領域,地理空間資料可以追蹤非法伐木活動,並更有效地執行保護法律。同樣,在水資源管理領域,地理空間分析有助於監測水位、預測乾旱並最佳化農業灌溉系統。
在安全和國防領域,地理空間分析在即時態勢感知和威脅評估中發揮著至關重要的作用。執法和軍事機構依靠地理空間分析來監控邊境、追蹤部隊調動並評估戰略區域的脆弱性。在自然災害和人道危機期間,地理空間工具透過提供受災地區的即時地圖來幫助協調緊急應變工作,使第一線救援人員能夠優先處理最需要援助的區域。在網路安全領域,地理空間分析也被用來監控網路攻擊的實體位置,幫助組織更有效地應對威脅。
地理空間分析能夠即時分析基於位置的數據,幫助各行各業的組織提高營運效率、減少環境影響並增強安全性。無論是最佳化供應鏈、管理自然資源或改善公共,地理空間分析都能提供關鍵洞察,進而促進更明智的決策和永續的成果。
哪些因素正在推動地理空間分析市場的成長?
推動地理空間分析市場快速成長的關鍵因素包括:對定位服務需求不斷成長、地理空間技術的進步、智慧城市的興起以及在農業、國防和物流等領域的應用不斷擴展。首先,各行業對定位服務(LBS) 的需求不斷成長是地理空間分析市場的主要驅動力。隨著智慧型手機、GPS 設備和物聯網 (IoT) 感測器的廣泛應用,企業正在利用地理空間分析為客戶提供個人化的即時服務。例如,零售商利用地理空間資料向客戶推送基於位置的優惠訊息,而運輸公司則利用地理空間資料進行資產追蹤和路線最佳化。
其次,地理空間技術的進步,例如衛星影像品質的提升、無人機能力的增強以及地理資訊系統(GIS)軟體的進步,正在推動市場成長。從多個來源收集高解析度影像和空間資料的能力,使得地理空間分析更加強大和精準。此外,人工智慧(AI)和機器學習演算法與地理空間平台的整合,使得對大型資料集的分析速度更快、精度更高。這些進步正在拓展地理空間分析的應用範圍,從預測城市發展到最佳化農業實踐,甚至到應對自然災害。
第三,智慧城市的興起和對都市化的日益重視正在推動對地理空間分析的需求。各國政府和地方政府正在採用地理空間工具來規劃和管理基礎設施、監控交通流量,並在智慧城市建設中有效分配資源。地理空間分析對於改善公共服務、提高能源效率以及應對世界各地城市普遍存在的快速都市化問題至關重要。隨著越來越多的城市採用智慧基礎設施,對用於分析和最佳化城市系統的地理空間分析的需求預計將顯著成長。
地理空間分析技術在農業、國防和物流等行業的日益廣泛應用也推動了市場成長。在農業領域,基於地理空間數據的精密農業技術有助於最佳化資源利用、提高作物產量並減少環境影響。在國防領域,地理空間分析技術被用於戰場規劃、威脅評估和即時監控,從而為軍事行動提供戰略優勢。同樣,物流和運輸業也依賴地理空間分析技術進行路線最佳化、車隊管理和縮短交貨時間,所有這些都有助於提高營運效率和客戶滿意度。
最後,人們對環境永續性和災害管理的日益關注正在推動地理空間分析技術的應用。各國政府、環保機構和組織正在利用地理空間工具監測森林砍伐、追蹤野生動物棲息地以及管理洪水、地震和野火等自然災害。即時預測和應對環境變化的能力正在推動對地理空間分析解決方案的需求,尤其是在氣候變遷加劇自然災害發生頻率和嚴重程度的情況下。
總之,由於對定位服務需求不斷成長、技術進步、智慧城市建設興起以及關鍵行業應用範圍的擴大,地理空間分析市場正經歷著顯著成長。隨著企業、政府和組織持續將數據驅動決策置於優先地位,地理空間分析將在最佳化營運、提升永續性和加強全球安全方面發揮關鍵作用。
部分:
元件(軟體/解決方案、服務)、類型(地面/現場分析、網路/位置分析、地理空間視覺化、其他類型)
人工智慧整合
我們正在利用檢驗的專家內容和人工智慧工具,革新市場和競爭情報分析。
Market Glass, Inc. 並沒有採用查詢LLM 或產業專用的SLM 的典型方法,而是建立了一個由世界各地領域專家精心策劃的內容庫,其中包括影片轉錄、BLOG、搜尋引擎研究以及大量的公司、產品/服務和市場數據。
關稅影響係數
在最新發布的報告中,Market Glass, Inc. 將關稅對地理市場的影響納入考量,並根據公司總部所在國、製造地以及進出口(成品和OEM產品)情況,預測企業競爭格局的變化。這種複雜多變的市場現實將對競爭對手產生多方面的影響,包括銷貨成本增加、盈利下降和供應鏈重組,同時也會影響微觀和宏觀市場動態。
Global Geospatial Analytics Market to Reach US$232.9 Billion by 2030
The global market for Geospatial Analytics estimated at US$117.0 Billion in the year 2024, is expected to reach US$232.9 Billion by 2030, growing at a CAGR of 12.2% over the analysis period 2024-2030. Surface & Field Analytics, one of the segments analyzed in the report, is expected to record a 13.8% CAGR and reach US$108.4 Billion by the end of the analysis period. Growth in the Network & Location Analytics segment is estimated at 10.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$32.4 Billion While China is Forecast to Grow at 11.3% CAGR
The Geospatial Analytics market in the U.S. is estimated at US$32.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$35.4 Billion by the year 2030 trailing a CAGR of 11.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.9% and 9.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.5% CAGR.
Global Geospatial Analytics Market - Key Trends and Drivers Summarized
Why Is Geospatial Analytics Revolutionizing Decision-Making Across Industries?
Geospatial analytics is transforming how industries collect, analyze, and leverage location-based data, enabling more informed decision-making in sectors such as urban planning, agriculture, logistics, and defense. But why is geospatial analytics so essential today? Geospatial analytics involves the gathering, processing, and visualization of data tied to specific geographical locations, using technologies like geographic information systems (GIS), remote sensing, and global positioning systems (GPS). By analyzing spatial relationships and patterns, it provides critical insights into physical environments, human behavior, and natural phenomena, making it a powerful tool for optimizing operations, improving resource management, and solving complex problems.
In urban planning, for example, geospatial analytics helps cities design smarter infrastructure, manage traffic flow, and allocate resources efficiently. In agriculture, it allows farmers to monitor crop health, optimize water usage, and enhance yield prediction by integrating weather data and soil conditions. The logistics sector relies on geospatial analytics to optimize delivery routes, manage fleets, and reduce transportation costs. In defense and security, it enables real-time monitoring and situational awareness in strategic operations. With its ability to provide actionable insights through the visualization of spatial data, geospatial analytics is becoming indispensable for businesses, governments, and organizations looking to enhance efficiency, sustainability, and decision-making.
How Are Technological Advancements Expanding the Capabilities of Geospatial Analytics?
Technological advancements are significantly expanding the capabilities and applications of geospatial analytics, making it more accurate, accessible, and powerful across industries. One of the most important innovations is the integration of advanced data collection technologies such as satellites, drones, and sensors. These tools provide high-resolution, real-time data that can be fed into geospatial systems, allowing for more precise and dynamic analysis. Drones, for instance, are revolutionizing data collection in agriculture, where they capture detailed images of fields to monitor crop health, identify pests, and assess water usage. Satellites offer a global perspective, providing critical information for tracking climate change, deforestation, and urban sprawl.
Another major advancement is the use of big data and machine learning algorithms in geospatial analytics. These technologies can process vast amounts of spatial data from multiple sources, uncovering patterns and trends that would be impossible to detect manually. Machine learning models are being trained to predict outcomes such as traffic congestion, crop yields, or disaster risks by analyzing historical geospatial data and real-time inputs. In urban planning, for example, machine learning algorithms can analyze traffic patterns and forecast the impact of new infrastructure projects, enabling more informed decision-making. In addition, big data allows for the integration of non-spatial data-such as demographics, economic indicators, or social media activity-into geospatial models, providing a more comprehensive view of the factors influencing geographical trends.
The rise of cloud computing is also transforming geospatial analytics, making it more scalable and accessible to businesses and governments of all sizes. Cloud-based platforms like Google Earth Engine and Esri’s ArcGIS enable organizations to store and process massive datasets without the need for expensive hardware. This allows users to access geospatial analytics tools from anywhere and collaborate in real time, democratizing access to powerful location-based insights. Cloud computing also enhances the ability to analyze geospatial data in near-real time, which is critical for industries like logistics, where timely information can mean the difference between profit and loss.
In addition, the development of artificial intelligence (AI) and predictive analytics is pushing the boundaries of geospatial analytics. AI algorithms can analyze geospatial data to make predictive models more accurate, whether it’s forecasting natural disasters, optimizing supply chains, or managing land use. Predictive analytics tools are helping organizations anticipate future trends and conditions, allowing them to take proactive measures. For example, AI-driven geospatial analytics can predict wildfire risks by analyzing historical fire data, vegetation conditions, and weather patterns. These advancements are making geospatial analytics more dynamic, actionable, and essential for solving complex challenges across a range of industries.
Why Is Geospatial Analytics Critical for Enhancing Operational Efficiency, Sustainability, and Security?
Geospatial analytics is critical for enhancing operational efficiency, promoting sustainability, and improving security because it provides precise, location-based insights that optimize resource allocation, reduce waste, and enable better decision-making. In logistics, for example, geospatial analytics is used to optimize delivery routes, track fleet movements, and monitor traffic conditions in real time. By analyzing spatial data, companies can minimize fuel consumption, reduce delivery times, and improve overall operational efficiency. This is particularly valuable for e-commerce companies, where rapid and cost-effective delivery is key to customer satisfaction.
In agriculture, geospatial analytics enables precision farming, where data-driven insights help farmers manage their resources more efficiently. By analyzing satellite imagery, weather patterns, and soil conditions, farmers can determine the optimal timing for planting, irrigation, and harvesting, resulting in better crop yields and reduced water and fertilizer usage. This not only improves the economic efficiency of farming operations but also promotes more sustainable agricultural practices. The ability to monitor large-scale farming operations remotely also reduces the need for manual labor and field inspections, further enhancing operational efficiency.
Geospatial analytics is also essential for environmental monitoring and conservation efforts. Governments and environmental organizations use geospatial tools to track deforestation, monitor wildlife habitats, and manage natural resources more effectively. By visualizing changes in land use and natural environments over time, geospatial analytics enables better decision-making regarding land conservation and environmental protection. For instance, in forestry, geospatial data can track illegal logging activities, allowing for more effective enforcement of conservation laws. Similarly, water resource management benefits from geospatial analytics, as it helps monitor water levels, forecast droughts, and optimize irrigation systems in agriculture.
In security and defense, geospatial analytics plays a vital role in real-time situational awareness and threat assessment. Law enforcement agencies and military organizations rely on geospatial analytics to monitor borders, track troop movements, and assess vulnerabilities in strategic areas. During natural disasters or humanitarian crises, geospatial tools help coordinate emergency response efforts by providing real-time maps of affected regions, enabling first responders to prioritize areas in need of assistance. In cybersecurity, geospatial analytics can even be used to monitor the physical locations of cyber-attacks, helping organizations respond to threats more effectively.
By offering the ability to analyze location-based data in real time, geospatial analytics helps organizations across various sectors operate more efficiently, reduce environmental impact, and enhance security. Whether it’s optimizing supply chains, managing natural resources, or improving public safety, geospatial analytics provides critical insights that lead to better decision-making and more sustainable outcomes.
What Factors Are Driving the Growth of the Geospatial Analytics Market?
Several key factors are driving the rapid growth of the geospatial analytics market, including the increasing demand for location-based services, advancements in geospatial technology, the rise of smart cities, and growing applications in sectors like agriculture, defense, and logistics. First, the increasing demand for location-based services (LBS) across industries is a major driver of the geospatial analytics market. With the widespread use of smartphones, GPS-enabled devices, and IoT (Internet of Things) sensors, businesses are leveraging geospatial analytics to deliver personalized, real-time services to their customers. For example, retailers use geospatial data to target customers with location-specific offers, while transportation companies use it to track assets and optimize routes.
Second, advancements in geospatial technology, including improvements in satellite imaging, drone capabilities, and GIS software, are fueling market growth. The ability to collect high-resolution imagery and spatial data from multiple sources is making geospatial analytics more powerful and precise. Additionally, the integration of artificial intelligence (AI) and machine learning algorithms into geospatial platforms is enabling faster, more accurate analysis of large datasets. These advancements are expanding the applications of geospatial analytics, from predicting urban growth to optimizing agricultural practices and even managing natural disasters.
Third, the rise of smart cities and the increasing focus on urbanization are driving demand for geospatial analytics. Governments and municipalities are adopting geospatial tools to plan and manage infrastructure, monitor traffic flow, and allocate resources efficiently in smart city initiatives. Geospatial analytics is critical for improving public services, enhancing energy efficiency, and managing the rapid urbanization seen in cities around the world. As more cities implement smart infrastructure, the demand for geospatial analytics to analyze and optimize urban systems is expected to grow significantly.
The growing applications of geospatial analytics in industries like agriculture, defense, and logistics are also contributing to market expansion. In agriculture, precision farming techniques driven by geospatial data are helping farmers optimize resource usage, improve crop yields, and reduce environmental impact. In defense, geospatial analytics is used for battlefield planning, threat assessment, and real-time surveillance, providing strategic advantages in military operations. Similarly, the logistics and transportation sector relies on geospatial analytics for route optimization, fleet management, and reducing delivery times, all of which improve operational efficiency and customer satisfaction.
Lastly, the increasing focus on environmental sustainability and disaster management is boosting the adoption of geospatial analytics. Governments, environmental agencies, and organizations are using geospatial tools to monitor deforestation, track wildlife habitats, and manage natural disasters such as floods, earthquakes, and wildfires. The ability to predict and respond to environmental changes in real time is driving demand for geospatial analytics solutions, particularly as climate change intensifies the frequency and severity of natural disasters.
In conclusion, the geospatial analytics market is experiencing significant growth due to the increasing demand for location-based services, technological advancements, the rise of smart cities, and expanding applications across key industries. As businesses, governments, and organizations continue to prioritize data-driven decision-making, geospatial analytics will play a critical role in optimizing operations, improving sustainability, and enhancing security across the globe.
SCOPE OF STUDY:
The report analyzes the Geospatial Analytics market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Component (Software & Solution, Services); Type (Surface & Field Analytics, Network & Location Analytics, Geovisualization, Other Types)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 22 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.