![]() |
市場調查報告書
商品編碼
1876611
資料流人工智慧處理器市場機會、成長促進因素、產業趨勢分析及預測(2025-2034年)Dataflow AI Processor Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球資料流 AI 處理器市值為 52 億美元,預計到 2034 年將以 11.1% 的複合年成長率成長至 147 億美元。

人工智慧推理、邊緣運算和資料中心營運等領域對高效能運算的需求不斷成長,推動了這一成長。業界正經歷快速創新,包括節能架構、3nm 至 7nm 先進製程節點的整合以及系統級晶片 (SoC) 和晶片組 (chiplet) 設計的應用。資料流處理器憑藉其並行處理能力,尤其適合處理複雜的神經網路,從而支援關鍵領域更快地做出決策。隨著人工智慧在邊緣環境的應用不斷擴展,對低延遲、高能源效率處理的需求也日益成長。這些處理器能夠減少資料傳輸,最大限度地提高吞吐量,並正成為頻寬受限環境中即時分析、物聯網部署和機器人技術的關鍵應用。汽車、醫療保健和電信等行業正擴大利用人工智慧進行預測分析、自動化和智慧控制系統,從而持續推動對資料流人工智慧處理器的需求。
| 市場範圍 | |
|---|---|
| 起始年份 | 2024 |
| 預測年份 | 2025-2034 |
| 起始值 | 52億美元 |
| 預測值 | 147億美元 |
| 複合年成長率 | 11.1% |
到2024年,靜態資料流架構的市佔率將達到28.2%,成為最大的細分市場。其可預測的執行模型、簡化的硬體需求和高效的資源利用率,確保了人工智慧工作負載的穩定性能,使其成為雲端和邊緣部署的首選方案。靜態資料流架構因其確定性行為、可擴展性和可靠性而備受青睞,尤其是在需要高效能運算和一致執行的領域。
預計到2024年,雲端原生部署市場規模將達17億美元。其可擴展性、靈活性和成本效益使其能夠與人工智慧平台無縫整合,實現動態工作負載管理,並加快模型訓練和推理速度。雲端原生解決方案還能簡化基礎架構維護,支援協作工作流程,並為企業提供滿足日益成長的人工智慧應用需求所需的敏捷性。
預計到2024年,北美數據流人工智慧處理器市佔率將達到40.2%。該地區市場擴張的主要驅動力是金融、醫療保健和自動駕駛系統等行業對即時人工智慧工作負載的強勁需求。先進的半導體研究、強大的雲端基礎設施以及領先科技公司的策略投資進一步推動了市場成長。政府推動人工智慧創新和邊緣運算應用的舉措提升了該地區的競爭力,為製造商提供了部署高效、可擴展且針對即時效能最佳化的資料流架構的機會。
全球資料流人工智慧處理器市場的主要參與者包括英偉達公司、英特爾公司、AMD公司、高通技術公司、蘋果公司、谷歌有限責任公司、微軟公司、IBM公司、三星電子有限公司、華為技術有限公司、Graphcore Limited、Mythic, Inc.、Cerebras Systems、Arm Holdings plc、聯發科公司、富士公司、百度銀行公司控股有限公司、百度公司和公司控股有限公司。這些公司正致力於策略性研發投資,以提高處理器的效率、可擴展性和能源效率。它們積極尋求合作與夥伴關係,以加強供應鏈並將處理器整合到更廣泛的人工智慧生態系統中。此外,各公司也透過開發針對邊緣、雲端和混合部署最佳化的專用架構,實現產品組合的多元化。
The Global Dataflow AI Processor Market was valued at USD 5.2 billion in 2024 and is estimated to grow at a CAGR of 11.1% to reach USD 14.7 billion by 2034.

The growth is fueled by the increasing demand for high-performance computing across AI inference, edge computing, and data center operations. The industry is witnessing rapid innovation through energy-efficient architectures, integration of advanced nodes ranging from 3nm to 7nm, and adoption of system-on-chip and chiplet-based designs. Dataflow processors are particularly well-suited for handling complex neural networks due to their parallel processing capabilities, supporting faster decision-making in critical sectors. As AI adoption expands in edge environments, the need for low-latency, energy-efficient processing is rising. These processors reduce data movement, maximize throughput, and are becoming essential for real-time analytics, IoT deployments, and robotics in bandwidth-constrained locations. Industries including automotive, healthcare, and telecommunications are increasingly leveraging AI for predictive analytics, automation, and intelligent control systems, driving sustained demand for dataflow AI processors.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $5.2 Billion |
| Forecast Value | $14.7 Billion |
| CAGR | 11.1% |
The static dataflow segment held a 28.2% share in 2024, making it the largest segment. Its predictable execution model, simplified hardware requirements, and efficient resource utilization ensure consistent performance for AI workloads, making it a preferred choice for both cloud and edge deployments. Static dataflow architectures are highly valued for deterministic behavior, scalability, and reliability, especially in sectors requiring high-performance computing and consistent execution.
The cloud-native deployment segment generated USD 1.7 billion in 2024. Its scalability, flexibility, and cost-effectiveness allow seamless integration with AI platforms, dynamic workload management, and faster model training and inference. Cloud-native solutions also simplify infrastructure maintenance, enable collaborative workflows, and provide enterprises with the agility needed to meet growing AI adoption demands.
North America Dataflow AI Processor Market held a 40.2% share in 2024. The region's market expansion is driven by high demand for real-time AI workloads across sectors such as finance, healthcare, and autonomous systems. Advanced semiconductor research, strong cloud infrastructure, and strategic investments by leading technology companies further support growth. Government initiatives promoting AI innovation and edge computing adoption enhance the region's competitive position, creating opportunities for manufacturers to deploy highly efficient, scalable dataflow architectures optimized for real-time performance.
Key companies operating in the Global Dataflow AI Processor Market include NVIDIA Corporation, Intel Corporation, Advanced Micro Devices, Inc. (AMD), Qualcomm Technologies, Inc., Apple Inc., Google LLC, Microsoft Corporation, IBM Corporation, Samsung Electronics Co., Ltd., Huawei Technologies Co., Ltd., Graphcore Limited, Mythic, Inc., Cerebras Systems, Arm Holdings plc, MediaTek Inc., Fujitsu Limited, Alibaba Group Holding Limited, Baidu, Inc., Synaptics Incorporated, and CEVA, Inc. Companies in the Dataflow AI Processor Market are focusing on strategic R&D investments to improve processor efficiency, scalability, and energy performance. Collaborations and partnerships are being pursued to strengthen supply chains and integrate processors into broader AI ecosystems. Firms are diversifying their portfolios by developing specialized architectures optimized for edge, cloud, and hybrid deployments.