![]() |
市場調查報告書
商品編碼
1797700
邊緣 AI 硬體市場機會、成長動力、產業趨勢分析及 2025 - 2034 年預測Edge AI Hardware Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
2024 年全球邊緣 AI 硬體市場價值 48 億美元,預計到 2034 年將以 16.3% 的複合年成長率成長,達到 204 億美元。對最小延遲和更高能效的即時處理的需求正在重塑企業實施 AI 的方式。越來越多的行業正在採用邊緣 AI 硬體來處理本地分析、最大限度地減少對雲端的依賴並提高資料安全性。這些設備採用 CPU、AI 加速器和 NPU 等整合元件設計,可直接在邊緣執行處理。工業機器人、自動駕駛汽車和智慧監控等應用依靠這些晶片進行快速決策和節能性能最佳化,從而降低營運成本並提高生產力。從集中式運算到本地化 AI 處理的轉變也產生了對能夠在受限環境中處理日益複雜任務的多功能晶片組的需求。
隨著運算能力日益向資料來源轉移,邊緣AI硬體市場正見證著智慧系統的蓬勃發展,這些系統旨在管理遠超基本推理的領域。這些新一代邊緣設備旨在執行即時加密、動態熱管理和多層決策等複雜任務,而無需依賴外部資料中心。它們採用先進的系統單晶片 (SoC) 架構,可在嚴苛條件下支援AI工作負載,同時兼顧效能與能效。這些系統還具有自適應資源分配功能,可根據運作環境優先執行安全協定、異常檢測和自主控制等關鍵功能。
市場範圍 | |
---|---|
起始年份 | 2024 |
預測年份 | 2025-2034 |
起始值 | 48億美元 |
預測值 | 204億美元 |
複合年成長率 | 16.3% |
2024年,智慧型手機領域的邊緣AI硬體市場以16億美元的估值領先市場。這些設備如今具備即時語音翻譯、AI增強攝影、生物辨識和設備助理等功能,這些功能減少了對雲端持續互動的需求。神經引擎的廣泛整合以及智慧型裝置在所有消費領域的快速普及,正在推動這一發展勢頭。用戶將受益於更快的處理速度、更高的安全性以及流暢的應用程式效能。
2024年,推理硬體市場價值達32億美元。這些系統經過量身定做,可在本地即時執行預先訓練的模型,以實現預測分析、視覺識別和人機互動等功能。由於雲端連接並非始終可用或實用,這些設備可確保操作不間斷,同時節省電力並保持高速性能,使其成為現代邊緣環境中不可或缺的一部分。
2024年,美國邊緣人工智慧硬體市場規模達15億美元,預計到2034年將以15.4%的複合年成長率成長。由於人工智慧在工業自動化、國防技術和智慧醫療系統中的廣泛應用,美國一直保持著強勁的市場地位。 5G網路的快速部署,加上即時人工智慧驅動的診斷和智慧交通基礎設施,進一步支撐了邊緣處理解決方案的強勁成長。美國市場受惠於技術創新、深度研發投入以及日益壯大的互聯解決方案生態系統。
積極塑造全球邊緣 AI 硬體市場的關鍵參與者包括 Hailo、NVIDIA Corporation、英特爾 Corporation、ARM、華為技術有限公司、微軟公司、美光科技、三星電子有限公司、戴爾科技公司、蘋果公司、聯發科公司、賽靈思公司、IBM Corporation、Alphabet Inc.(Google)和高通公司。邊緣 AI 硬體領域的領先公司優先開發針對低功耗、即時處理的高效能晶片。許多公司正在大力投資微型 NPU、片上 AI 訓練以及對混合運算環境的支援。與雲端和邊緣基礎設施供應商的策略合作夥伴關係有助於加速跨垂直產業的整合。參與者正在透過增強的安全性、AI 模型適應性和更好的熱效率來擴展其 SoC 產品組合。
The Global Edge AI Hardware Market was valued at USD 4.8 billion in 2024 and is estimated to grow at a CAGR of 16.3% to reach USD 20.4 billion by 2034. The demand for real-time processing with minimal delay and greater energy efficiency is reshaping how enterprises implement AI. More industries are adopting edge AI hardware to handle local analytics, minimize cloud dependency, and improve data security. These devices are designed with integrated components like CPUs, AI accelerators, and NPUs to perform processing directly at the edge. Applications such as industrial robotics, automated vehicles, and smart monitoring rely on these chips for quick decision-making and energy-optimized performance, which translates to lower operating costs and improved productivity. The shift from centralized computing to localized AI processing is also creating a need for multifunctional chipsets capable of handling increasingly complex tasks in constrained environments.
As computing capabilities increasingly shift toward the data source, the edge AI hardware market is witnessing a surge in intelligent systems designed to manage far more than just basic inference. These next-generation edge devices are engineered to perform complex tasks such as real-time encryption, dynamic thermal management, and multi-layered decision-making without relying on external data centers. They incorporate advanced system-on-chip (SoC) architectures that support AI workloads under demanding conditions while balancing performance with energy efficiency. These systems also feature adaptive resource allocation, allowing them to prioritize critical functions such as security protocols, anomaly detection, and autonomous control based on the operational environment.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $4.8 Billion |
Forecast Value | $20.4 Billion |
CAGR | 16.3% |
In 2024, the edge AI hardware market from the smartphones segment led the market with a valuation of USD 1.6 billion. These devices now feature capabilities like real-time voice interpretation, AI-enhanced photography, biometric identification, and on-device assistants-all of which reduce the need for constant cloud interaction. Widespread integration of neural engines and rapid adoption of smart devices across all consumer segments are fueling this momentum. Users benefit from quicker processing, heightened security, and seamless app performance.
The inference hardware segment was valued at USD 3.2 billion in 2024. These systems are tailored to execute pre-trained models locally and in real time for functions like predictive analytics, visual recognition, and machine-to-human interaction. With cloud connectivity not always available or practical, these devices ensure operations continue uninterrupted while conserving power and maintaining high-speed performance-making them indispensable in modern edge environments.
United States Edge AI Hardware Market was valued at USD 1.5 billion in 2024 and is projected to grow at a CAGR of 15.4% through 2034. The U.S. has maintained a strong position thanks to widespread integration of AI in industrial automation, national defense technologies, and smart healthcare systems. The rapid rollout of 5G networks, combined with real-time, AI-driven diagnostics and intelligent transportation infrastructure, further supports robust growth in edge-based processing solutions. The U.S. market benefits from a blend of tech innovation, deep R&D investment, and a growing ecosystem of connected solutions.
Key players actively shaping this Global Edge AI Hardware Market include Hailo, NVIDIA Corporation, Intel Corporation, ARM, Huawei Technologies Co., Ltd., Microsoft Corporation, Micron Technology, Samsung Electronics Co., Ltd., Dell Technologies Inc., Apple Inc., MediaTek Inc., Xilinx Inc., IBM Corporation, Alphabet Inc. (Google), and Qualcomm Incorporated. Leading companies in the edge AI hardware space are prioritizing high-performance chip development tailored for low-power, real-time processing. Many are investing heavily in miniaturized NPUs, on-chip AI training, and support for hybrid computing environments. Strategic partnerships with cloud and edge infrastructure providers help accelerate integration across verticals. Players are expanding their SoC portfolios with enhanced security, AI model adaptability, and better thermal efficiency.