![]() |
市場調查報告書
商品編碼
1909944
視訊遠端資訊處理價值鍊和技術的策略分析Strategic Analysis of Video Telematics Value Chain and Technologies |
||||||
人工智慧賦能的物聯網設備與深度學習的整合有望推動視訊遠端資訊處理解決方案的變革性成長。
由於能夠減少車輛事故、有效保障駕駛員安全並提高投資收益率,視訊遠端資訊處理解決方案預計將首先成為企業車隊的標準配置。鑑於安全解決方案在長途運輸行業中有著廣泛的應用,重型和中型商用車輛很可能率先採用者視訊遠端資訊處理技術。
競爭格局正因內部解決方案與合作夥伴解決方案的整合而發生變化,加速了支援車隊管理、安全解決方案和合規服務的儀錶板的普及,所有這些服務都整合在一個平台上。
應用程式介面(API)、人工智慧(AI)、巨量資料分析和深度神經網路(DNN)等技術進步,使得智慧且適應性強的解決方案能夠以可擴展的方式部署。生態系統夥伴關係進一步促進了整合經營模式的構建,簡化了使用者互動、分析和決策流程。應用場景涵蓋駕駛員、車輛和車隊,包括高級駕駛輔助系統(ADAS)、駕駛員狀態監控、教練和績效管理、隨選影片服務等等。這些應用正透過基於全球駕駛資料訓練的機器學習演算法不斷發展演進。
本研究概述了視訊遠端資訊處理工作流程、視訊遠端資訊處理技術、領先的視訊遠端資訊解決方案供應商以及更廣泛的視訊遠端資訊處理領域。
Integration of AI-powered IoT Devices with Deep Learning is Poised to Accelerate Transformative Growth in Video Telematics Solutions
Video telematics solutions are poised to become the norm amongst enterprise fleets in the initial phase, owing to reduced vehicle claims, efficient driver exoneration, and higher realized return on investment. Medium and heavy-duty commercial vehicles for long-haul vehicle operations are primarily poised to be early adopters of video telematics, given the extensive applicable use cases of safety solutions in these industries.
The competitive ecosystem is shaped by integrated offerings that combine in-house and partner solutions. This convergence has accelerated the adoption of unified dashboards that support fleet management, safety solutions, and compliance services within a single platform.
Recent technological advances, including the widespread use of application programming interfaces (APIs), artificial intelligence (AI), big data analytics, and deep neural networks (DNNs), have enabled scalable deployment of intelligent and adaptive solutions. Ecosystem partnerships further facilitate integrated business models that streamline user engagement, analysis, and decision-making. Use cases extend across drivers, vehicles, and fleets, encompassing advanced driver-assistance systems, driver state monitoring, coaching and performance management, and video-on-demand services. These applications continuously evolve through machine learning algorithms trained on global driving data.
This study provides an overview of video telematics workflows, the technologies driving video telematics, and key providers of video telematics solutions, as well as a broader video telematics outlook.