![]() |
市場調查報告書
商品編碼
1892094
流程自動化的未來,2025年The Future of Process Automation, 2025 |
||||||
共生智慧和自動駕駛將引領流程產業的變革性成長。
本研究檢驗了製程自動化市場的未來,並分析了流程工業和混合工業中從傳統硬體中心系統向軟體定義、人工智慧驅動的自主運作的轉型。研究採用ISA-95技術層分類法,評估了石油天然氣、化學、製藥和連續加工產業的市場演變和競爭動態。
透過全面的供應商分析,識別出下一代自動化架構的競爭性策略願景,並揭示了三大關鍵成長機會:人工智慧驅動的自主最佳化平台、邊緣人工智慧預測性維護生態系統以及開放式自動化整合平台。顛覆性技術、創新經營模式和日益激烈的競爭等策略挑戰從根本上重塑傳統的自動化範式。
分析表明,勞動力挑戰、營運複雜性、網路安全威脅和監管合規要求推動流程工業架構向共生智慧和自主運行方向演進。主要調查結果包括:現場級高階控制系統和跨層平台技術具有最大的成長潛力,而智慧營運管理則面臨巨大的實施障礙。
這項研究深入分析了推動流程自動化轉變為軟體定義自主營運框架的技術和市場促進因素。
報告摘要:流程自動化市場,2024-2032年
全球過程自動化市場在2024年達到481.3億美元,到2032年將達到1,842.9億美元,2024年至2032年的年複合成長率(CAGR)為18.3%。該市場涵蓋工業人工智慧、自主運作、數位雙胞胎和預測性維護解決方案,推動智慧化、自最佳化和互聯化工業系統邁入新時代。軟體定義自動化、即時人工智慧驅動運作和先進數位雙胞胎的應用將幫助流程工業提高效率、安全性和營運韌性。
關鍵市場趨勢與洞察
市場規模及預測
市場概覽 - 流程自動化市場,2024-2032年
在全球範圍內,工業自動化、工業人工智慧和數位雙胞胎市場融合,重新定義著各行業的競爭力和效率。流程自動化產業正從人工監控系統轉型為由人工智慧決策引擎和邊緣連接主導的整合式智慧營運。
影響自動駕駛市場的關鍵結構性變化包括:
工業4.0推動自動化從被動回應向自學習、自主工作流程轉型,減少對人的依賴,並彌合技能短缺造成的創新鴻溝。Emerson、Honeywell、Siemens、Yokogawa等領先的自動化公司正主導著向「自主設計」的轉型,將開放式架構、零信任網路安全和可擴展資料模型相結合。
這些變化與工業人工智慧市場的全球大趨勢相符。人工智慧驅動的分析引擎如今已成為大多數製程控制系統的基礎。加之預測性維護市場的進步,工業企業正朝著「始終運作」的營運模式發展,將停機時間減少高達30%。
這項轉型將形成一個「自動化三角」,將人工智慧、數位雙胞胎平台和自主控制系統結合在一起,構成未來工業價值鏈的核心基礎設施。
市場規模與收入預測 - 過程自動化市場,2024-2032年
預計製程自動化市場將從2024年的481.3億美元成長到2032年的1,842.9億美元,年複合成長率高達18.3%。在這個生態系統中,工業人工智慧市場和自動駕駛市場等相關產業快速擴張,形成協同成長動力。
增強型現場控制與嵌入式人工智慧是工業數位化發展的核心引擎,它使工廠能夠演進為完全自主的系統。數位雙胞胎技術的整合提升了可視性和預測性控制能力,而跨層軟體平台則實現了現場、邊緣和企業系統的近即時統一。
預測性維護市場也促進了這一擴張,基於人工智慧的監控和故障建模成為現代製程控制框架的核心能力。
分析範圍 - 流程自動化市場,2024-2032年
弗若斯特沙利文的這項研究以流程自動化、工業人工智慧和自主營運市場的交集為中心,分析了這三個市場將對全球製造業、能源和化學產業產生的綜合影響。
預測期為2023年至2032年,收入以美元計,依製造商層級計算。本分析不包括機器人和業務流程自動化,而是致力於人工智慧驅動的操作技術,這些技術能夠提升工業環境中的即時控制、安全性和可靠性。
細分市場分析 - 流程自動化市場,2024-2032年
市場區隔反映了傳統自動化和工業人工智慧市場的整合:
這些細分領域共同代表了工業運作各層向智慧自主網路的技術融合。這些技術的融合在人工智慧預測、數位模擬和流程執行之間建構了一個共生生態系統,構成了自主營運市場的基礎。
成長要素- 流程自動化市場,2024-2032年
成長限制因素 - 流程自動化市場,2024-2032年
競爭格局 - 流程自動化市場,2024-2032年
自動駕駛市場的競爭特徵是主要企業和大型控制系統供應商之間快速的技術創新。
Frost & Sullivan已確定以下主要參與者:
這些公司正朝著統一的願景邁進,即採用軟體定義、雲端原生技術來建構自主的工業生態系統。它們的策略方向強調模組化人工智慧平台、開放原始碼協作和基於SaaS的預測控制,推動工業人工智慧、數位雙胞胎和預測性維護領域的市場整合。
常見問題:
Symbiotic Intelligence and Autonomous Operations Herald Transformational Growth in Process Industries
This study examines the future of the process automation market, analyzing the shift from traditional hardware-centric systems to software-defined, AI-driven autonomous operations within process and hybrid industries. The research employs ISA-95 technology layer segmentation to assess market evolution and competitive dynamics across oil & gas, chemicals, pharmaceuticals, and continuous process sectors.
Through comprehensive vendor analysis, the study identifies competing strategic visions for next-generation automation architectures, revealing three critical growth opportunities: AI-driven autonomous optimization platforms, edge AI predictive maintenance ecosystems, and open automation integration platforms. Strategic imperatives, including disruptive technologies, innovative business models, and competitive intensity, fundamentally reshape traditional automation paradigms.
The analysis demonstrates process industries' architectural evolution toward symbiotic intelligence and autonomous operations, driven by workforce challenges, operational complexity, cybersecurity threats, and regulatory compliance demands. Key findings indicate that field-level enhanced control systems and cross-layer platform technologies represent the highest growth potential, while intelligent operations management faces significant implementation barriers.
This research provides insights into the technological and market forces transforming process automation toward software-defined, autonomous operational frameworks.
Report Summary: Process Automation Market, 2024-2032
The global process automation market was valued at USD 48.13 billion in 2024 and is projected to reach USD 184.29 billion by 2032, growing at a CAGR of 18.3% from 2024 to 2032. This market spans Industrial AI, Autonomous Operations, Digital Twin, and Predictive Maintenance solutions, driving a new era of intelligent, self-optimizing, and connected industrial systems. The adoption of software-defined automation, real-time AI-driven operations, and advanced digital twins positions process industries for enhanced efficiency, safety, and operational resilience.
Key Market Trends & Insights
Market Size & Forecast
Market Overview - Process Automation Market, 2024-2032
Globally, the convergence of the industrial automation, Industrial AI, and Digital Twin markets is redefining competitiveness and efficiency across sectors. The process automation industry is transitioning from manual monitoring systems to integrated, intelligent operations led by AI-based decision engines and edge connectivity.
Key structural changes influencing the Autonomous Operations market include:
Industry 4.0 is driving automation from reactive to self-learning, autonomous workflows, reducing manual dependency and closing the innovation gap caused by skill shortages. Major automation players such as Emerson, Honeywell, Siemens, and Yokogawa lead the shift toward ""autonomy by design,"" combining open architecture, zero-trust cybersecurity, and scalable data models.
These changes synchronize with global megatrends in the Industrial AI market, where AI-driven analytics engines now underpin most process control systems. Paired with advancements in the Predictive Maintenance market, industrial companies are moving toward ""always-on"" operations that lower downtime by up to 30%.
This transformation creates a cohesive ""Automation Triangle""-with AI, Digital Twin infrastructure, and autonomous control systems forming the core infrastructure of tomorrow's industrial value chain.
Market Size and Revenue Forecast - Process Automation Market, 2024-2032
The process automation market is forecasted to grow from USD 48.13 billion in 2024 to USD 184.29 billion by 2032, recording an exceptional CAGR of 18.3%. Within this ecosystem, adjacent industries such as the Industrial AI market and Autonomous Operations market are expanding rapidly, providing synergistic growth momentum.
Enhanced Field Control-powered by embedded AI-is the growth engine of industrial digitization, enabling factories to evolve toward fully autonomous setups. The integration of Digital Twin technologies drives visibility and predictive control, while cross-layer software platforms unify field, edge, and enterprise systems in near real time.
The Predictive Maintenance market complements this expansion, as AI-based monitoring and failure modeling become core functions of modern process control frameworks.
Scope of Analysis - Process Automation Market, 2024-2032
This Frost & Sullivan study centers on the intersection of the process automation market, Industrial AI market, and Autonomous Operations market, analyzing their collective impact on global manufacturing, energy, and chemical sectors. The scope covers:
The forecast period runs through 2023-2032, with revenue measured in US dollars at the manufacturer level. The analysis excludes robotic and business process automation and focuses on AI-driven operational technologies that enhance real-time control, safety, and reliability in industrial settings.
Segmentation Analysis - Process Automation Market, 2024-2032
The market's segmentation mirrors the integration between traditional automation and the Industrial AI market:
Collectively, these segments signify the technological merging of industrial operational layers into an intelligent autonomy network. The integration of these technologies is creating a symbiotic ecosystem between AI prediction, digital simulation, and process execution-forming the backbone of the Autonomous Operations market.
Growth Drivers - Process Automation Market, 2024-2032
Growth Restraints - Process Automation Market, 2024-2032
Competitive Landscape - Process Automation Market, 2024-2032
Competition in the Autonomous Operations market is defined by rapid innovation among industrial AI champions and leading control system providers.
Frost & Sullivan identifies the following key participants:
These players are converging on a unified vision-software-defined, cloud-native technologies that enable autonomous industrial ecosystems. Their strategic direction emphasizes modular AI platforms, open-source collaboration, and SaaS-based predictive control, driving market consolidation across the Industrial AI, Digital Twin, and Predictive Maintenance segments.
FAQ: