封面
市場調查報告書
商品編碼
1883971

2024-2040年歐洲氫能產業的成長機會

Growth Opportunities in the European Hydrogen Industry, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 80 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

由於需求主要集中在傳統消費產業,因此替代氫能正逐漸成為小眾市場。

隨著歐洲能源轉型加速,替代/低碳氫化合物的市場趨勢和成長軌跡表明,其存在著利基市場機會。傳統的氫氣消費產業,包括煉油、化工和石化產業,以及鋼鐵和玻璃製造等重工業部門,都將主導其生產和需求成長。近期對歐盟主要市場和英國的分析表明,預計到2030年,低碳氫的總產量將達到300萬噸。綠氫和藍氫氫預計將引領市場,主導是紫色氫和生物基氫,其中荷蘭、德國和西班牙將處於領先地位。隨著市場成長日益複雜,投資者和計劃開發商克服挑戰的關鍵促進因素之一是長期金融支持,例如法國和義大利等國提供的10-15年期差價合約(CfD)。此類機制對於氫能產業實現與傳統氫能的成本競爭力至關重要。

本研究透過基於各國監管因素、市場進入和實體市場設計的3D評估和排名,概述了歐洲主要市場如何與其國家氫能策略相契合。隨後,研究分析了各種氫氣商品類型的長期產量預測,概述了氫能價值鏈上的主要參與者,以及各市場的主要承購商。

分析範圍

分析範圍包括以下幾種氫類型:

  • 灰氫:這是利用天然氣蒸氣重組(SMR)技術生產的氫氣,其中甲烷與高溫蒸氣反應生成氫氣和二氧化碳。這種傳統的生產方法是碳排放強度最高的,每生產1公斤氫氣大約會排放10公斤二氧化碳。
  • 藍氫:採用與灰色氫氣相同的蒸氣重整方法生產,但結合碳捕獲和儲存85-95% 的二氧化碳排放。
  • 綠氫氣:利用太陽能、風力和水力發電等100%可再生能源,透過電解水製取。電解過程將水分子(H₂O)分解為氫氣和氧氣,產生氫氣的同時不會排放二氧化碳。
  • 紫色氫(又稱粉紅色氫):利用核能電解產生的。
  • 生物基:透過熱化學過程(氣化、熱解)或生物過程(發酵、光生物轉化)將有機生質能原料轉化為氫氣而產生的氫氣。

三大戰略挑戰對歐洲氫能產業的影響

顛覆性技術

  • 原因:為實現全球脫碳目標,清潔氫(H2)需要取代化石氫。然而,從成本角度來看,要取代化石氫,清潔氫的成本必須降低到灰氫成本的三分之一到五分之一(具體數值取決於生產地區),這是一項極為艱鉅的任務。從這個意義上講,清潔氫氣的生產過程需要降低電力成本並提高能源利用效率。
  • 弗羅斯特的觀點:提高能耗效率需要提高電解以及整個工廠的電力效率,這對於降低業主/營運商的營運成本至關重要。電解製造商必須不斷追求技術變革和創新,才能實現這一目標,並避免電解系統標準化程度低。

變革性大趨勢

  • 原因:世界各國正加速邁向淨零排放目標,各自根據自身優勢和劣勢選擇不同的發展路徑。清潔氫氣生產預計將成為實現經濟需求側脫碳的關鍵途徑之一。清潔氫氣將有助於化肥生產、加氫(石油、石化和食品製造)以及脫硫和加氫裂解(原油煉製)的脫碳。
  • 弗羅斯特的觀點:鑑於目前正在籌建的計劃數量,未來五到十年清潔氫氣生產具有巨大的成長潛力。因此,在聯邦和州政府層級推出更多扶持政策的推動下,未來幾年對電解的需求可能會增加。

產業合作

  • 原因:實現淨零排放的競賽依賴生態系統中不同相關人員之間的合作,以達成通用目標。這可以防止成本轉嫁給消費者,維護系統可靠性,並實現脫碳目標。缺乏合作,進展將不均衡,相關人員也將無法實現其淨零排放目標。
  • 弗羅斯特的觀點:為了加速清潔氫能的脫碳影響,需要在氫能經濟的供應端加強電解槽製造商、材料供應商和表面處理公司之間的合作,以及供需雙方之間的合作。

目錄

調查範圍

  • 分析範圍

戰略問題

  • 為什麼成長變得越來越困難
  • The Strategic Imperative 8
  • 三大戰略挑戰對歐洲氫能產業的影響

研究結果、研究範圍、研究解答的關鍵問題、分析調查方法和預測假設

  • 關鍵見解
  • 主要發現:國家排名
  • 本次調查解答的關鍵問題
  • 調查方法與預測假設概況

比利時

  • 監理概覽:比利時
  • 市場准入便利度:比利時
  • 實體市場設計:比利時
  • 比利時替代氫氣前景展望
  • 預測說明:比利時
  • 前五名用途:比利時
  • 國家生態系:比利時

法國

  • 監理概況:法國
  • 市場進入難易度:法國
  • 實體市場設計:法國
  • 法國替代氫氣前景展望
  • 預測說明:法國
  • 前五名用途:法國
  • 國家生態系:法國

德國

  • 監理概覽:德國
  • 市場進入門檻:德國
  • 實體市場設計:德國
  • 替代氫氣前景:德國
  • 預測說明:德國
  • 前五的應用領域:德國
  • 國家生態系:德國

義大利

  • 監理概覽:義大利
  • 市場准入便利度:義大利
  • 實體市場設計:義大利
  • 替代氫氣生產展望:義大利
  • 預測說明:義大利
  • 前五的應用領域:義大利
  • 國家生態系:義大利

荷蘭

  • 監理概覽:荷蘭
  • 市場進入便利度:荷蘭
  • 實體市場設計:荷蘭
  • 替代氫氣前景:荷蘭
  • 預測說明:荷蘭
  • 荷蘭五大用途
  • 國家生態系:荷蘭

挪威

  • 監理概覽:挪威
  • 市場准入便利度:挪威
  • 實體市場設計:挪威
  • 挪威替代氫氣前景展望
  • 預測說明:挪威
  • 前五的應用:挪威
  • 國家生態系:挪威

波蘭

  • 監理概覽:波蘭
  • 市場准入便利度:波蘭
  • 實體市場設計:波蘭
  • 波蘭替代氫氣前景展望
  • 預測說明:波蘭
  • 五大用途:波蘭
  • 國家生態系:波蘭

西班牙

  • 監理概況:西班牙
  • 市場進入門檻:西班牙
  • 實體市場設計:西班牙
  • 西班牙替代氫氣前景展望
  • 預測說明:西班牙
  • 前五大用途:西班牙
  • 國家生態系:西班牙

瑞典

  • 監理概況:瑞典
  • 市場進入難易度:瑞典
  • 實體市場設計:瑞典
  • 瑞典替代氫氣前景展望
  • 預測說明:瑞典
  • 瑞典五大用途
  • 國家生態系:瑞典

英國

  • 監理概覽:英國
  • 市場准入便利度:英國
  • 實體市場設計:英國
  • 英國替代氫氣生產展望
  • 說明:英國
  • 五大用途:英國
  • 國家生態系:英國

成長機會領域

  • 成長機會1:利用國家及州級資金籌措機制生產具競爭力的低碳氫化合物
  • 成長機會2:策略性業務定位,以滿足對低碳氨和甲醇日益成長的需求
  • 成長機會3:歐洲、波羅的海地區和北非之間低碳氫化合物的進出口

附錄

  • The Strategic Imperative 8
  • 標準定義:標準 1 至 5
  • 標準定義:標準 6-10

附錄與後續步驟

  • 成長機會帶來的益處和影響
  • 下一步
  • 附件清單
  • 免責聲明
簡介目錄
Product Code: MH58-27

Alternative Hydrogen Becoming a Niche as Offtake Opportunities Become More Concentrated Between Traditional Hydrogen Consumption Industries

As the energy transition gathers pace in Europe, market evidence and the growth trajectory of alternative/low-carbon hydrogen point to a niche market opportunity where production and offtake will likely be dominated by traditional hydrogen consumption industries, including refining, chemicals, and petrochemicals, as well as heavy industrial sectors like steel and glass manufacturing. Our latest analysis of key EU markets and the UK indicates that total low-carbon hydrogen production will likely reach 3 million tonnes by 2030, led by green and blue hydrogen, followed by purple and bio-based hydrogen, with the Netherlands, Germany, and Spain leading from the front. As growth becomes increasingly complex in this market, one of the key enablers for investors and project developers to overcome this challenge has been long-term funding support, such as contracts for difference payments offered over a ten- to fifteen-year horizon in countries like France and Italy. Such mechanisms will be vital for the hydrogen industry to achieve cost competitiveness with conventional hydrogen.

This study outlines how major European markets are aligning with their respective national hydrogen strategies through a three-dimensional rating and ranking based on regulatory drivers, market access, and physical market design in each country covered in scope, followed by long-term production forecasts of different types of hydrogen, an overview of key incumbents across the hydrogen value chain, and the top offtakers in each country market.

Scope of Analysis

The scope of analysis includes the following hydrogen types:

  • Grey: Hydrogen produced from natural gas through steam methane reforming (SMR), where methane reacts with high-temperature steam to generate hydrogen and carbon dioxide. This conventional production method releases approximately 10 kilograms of CO2 for every kilogram of hydrogen produced, making it the most carbon-intensive form.
  • Blue: hydrogen is produced using the same steam methane reforming process as grey hydrogen but incorporates carbon capture and storage (CCS) technology to trap 85-95% of the CO2 emissions.
  • Green: hydrogen is produced through electrolysis of water using 100% renewable electricity from sources like solar, wind, or hydroelectric power. The electrolysis process splits water molecules (H2O) into hydrogen and oxygen without generating any carbon dioxide emissions.
  • Purple: Purple hydrogen (also called pink hydrogen) is produced through electrolysis powered by nuclear energy.
  • Bio-based: hydrogen produced from organic biomass materials through thermochemical processes (gasification, pyrolysis) or biological processes (fermentation, photobiological conversion) that convert organic matter into hydrogen gas.

The Impact of the Top 3 Strategic Imperatives on the European Hydrogen Industry

Disruptive Technologies

  • Why: To meet global decarbonization goals, clean hydrogen (H2) must replace fossil H2. However, from a cost standpoint, to replace fossil H2, clean H2 costs must decrease three- to five-fold to reach those of grey H2, depending on the region of production-an extremely challenging feat to achieve. In that sense, the cost of electricity needs to decrease, and its consumption efficiency needs to increase during clean H2 production.
  • Frost Perspective: Increasing consumption efficiency requires higher electrolyzer and balance of plant electrical efficiency. This is vital to reduce the operational costs of owners/operators. Electrolyzer manufacturers must consistently pursue technology disruption and innovation to achieve this and avoid becoming trapped in lower electrolyzer system standardization.

Transformative Megatrends

  • Why: The world is racing to meet net-zero goals, with each country pursuing specific pathways according to their strengths and weaknesses. Clean H2 production will be a key pathway-among many-to decarbonize the economy's demand side. Clean H2 will contribute to decarbonizing fertilizer production, hydrogenation (oils, petrochemicals, and food manufacturing), and desulphurization and hydrocracking (crude oil refining).
  • Frost Perspective: In the next 5 to 10 years, clean H2 production's significant growth capacity will come online, considering the number of projects in the pipeline. As a result, electrolyzer demand will increase over the coming years, with the added support of federal and state-level support policies.

Industry Convergence

  • Why: The race to net-zero emissions is about collaboration between various ecosystem stakeholders to meet common objectives, so that costs do not pass onto consumers, to keep system reliability strong, and to reach decarbonization goals. Without collaboration, progress will be imbalanced and biased, and stakeholders will fail to meet their net-zero goals.
  • Frost Perspective: Collaboration in the supply side of the H2 economy-between electrolyzer manufacturers, material providers, and surface finishing providers-and between the supply and demand sides must increase to accelerate clean H2's impact on decarbonization.

Table of Contents

Research Scope

  • Scope of Analysis

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8
  • The Impact of the Top 3 Strategic Imperatives on the European Hydrogen Industry

Research Findings, Scope, Key Questions This Study Will Answer, Profiling Methodology, and Forecasting Assumptions

  • Key Insights
  • Key Findings: Country Rankings
  • Key Questions This Study Will Answer
  • Profiling Methodology and Forecast Assumptions

Belgium

  • Regulatory Overview-Belgium
  • Ease of Market Access-Belgium
  • Physical Market Design-Belgium
  • Alternative H2 Production Outlook-Belgium
  • Forecast Commentary-Belgium
  • Top Five Applications-Belgium
  • Country Ecosystem-Belgium

France

  • Regulatory Overview-France
  • Ease of Market Access-France
  • Physical Market Design-France
  • Alternative H2 Production Outlook-France
  • Forecast Commentary-France
  • Top Five Applications-France
  • Country Ecosystem-France

Germany

  • Regulatory Overview-Germany
  • Ease of Market Access-Germany
  • Physical Market Design-Germany
  • Alternative H2 Production Outlook-Germany
  • Forecast Commentary-Germany
  • Top Five Applications-Germany
  • Country Ecosystem-Germany

Italy

  • Regulatory Overview-Italy
  • Ease of Market Access-Italy
  • Physical Market Design-Italy
  • Alternative H2 Production Outlook-Italy
  • Forecast Commentary-Italy
  • Top Five Applications-Italy
  • Country Ecosystem-Italy

Netherlands

  • Regulatory Overview-Netherlands
  • Ease of Market Access-Netherlands
  • Physical Market Design-Netherlands
  • Alternative H2 Production Outlook-Netherlands
  • Forecast Commentary-Netherlands
  • Top Five Applications-Netherlands
  • Country Ecosystem-Netherlands

Norway

  • Regulatory Overview-Norway
  • Ease of Market Access-Norway
  • Physical Market Design-Norway
  • Alternative H2 Production Outlook-Norway
  • Forecast Commentary-Norway
  • Top Five Applications-Norway
  • Country Ecosystem-Norway

Poland

  • Regulatory Overview-Poland
  • Ease of Market Access-Poland
  • Physical Market Design-Poland
  • Alternative H2 Production Outlook-Poland
  • Forecast Commentary-Poland
  • Top Five Applications-Poland
  • Country Ecosystem-Poland

Spain

  • Regulatory Overview-Spain
  • Ease of Market Access-Spain
  • Physical Market Design-Spain
  • Alternative H2 Production Outlook-Spain
  • Forecast Commentary-Spain
  • Top Five Applications-Spain
  • Country Ecosystem-Spain

Sweden

  • Regulatory Overview-Sweden
  • Ease of Market Access-Sweden
  • Physical Market Design-Sweden
  • Alternative H2 Production Outlook-Sweden
  • Forecast Commentary-Sweden
  • Top Five Applications-Sweden
  • Country Ecosystem-Sweden

United Kingdom

  • Regulatory Overview-United Kingdom
  • Ease of Market Access-United Kingdom
  • Physical Market Design-United Kingdom
  • Alternative H2 Production Outlook-United Kingdom
  • Forecast Commentary-United Kingdom
  • Top Five Applications-United Kingdom
  • Country Ecosystem-United Kingdom

Growth Opportunity Universe in Software-Defined Trucks

  • Growth Opportunity 1: Take Advantage of National and State Level Funding Mechanisms to Produce Low-Carbon Hydrogen Competitively
  • Growth Opportunity 2: Strategic Business Positioning to Address the Growing Demand for Low-Carbon Ammonia and Methanol
  • Growth Opportunity 3: Import Export Opportunities of Low-Carbon Hydrogen Between Europe, the Baltic, and North Africa

Appendix

  • The Strategic Imperative 8
  • Criteria Definitions-Criteria 1-5
  • Criteria Definitions-Criteria 6-10

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer