封面
市場調查報告書
商品編碼
1811973

碳中和策略-純電動車的碳足跡

Carbon Neutrality Strategies-Battery Electric Vehicles' Carbon Footprint

出版日期: | 出版商: Frost & Sullivan | 英文 47 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

監管支援、電池創新、回收的進步、再生能源整合以及透明的供應鏈將推動電動車生態系統向碳中和方向轉型成長

本研究全面分析了實現純電動車(BEV)碳中和的策略,重點在於電動車電池的生命週期排放。研究探討了生命週期排放的概念,並評估了從原料開採到報廢(EOL)階段的環境影響。研究檢驗了政府、目標商標產品製造商(OEM)和電池製造商在製定道路交通脫碳策略方面的作用和影響。此外,研究還評估了目的是減少純電動車碳足跡的現有和新興政策的有效性。

本研究主要關注有助於實現碳中和的新技術,例如電池化學技術的進步、永續材料採購以及改進的回收過程。此外,本研究也著重於向碳中和交通轉型帶來的成長機會,並識別關鍵趨勢和潛在創新領域。透過分析這些因素,本研究為純電動車永續性的不斷發展以及實現長期碳中和目標所需的協同努力提供了寶貴的見解。

三大戰略重點對電動車產業的影響

轉型大趨勢

  • 原因:電動車(EV)是原始設備製造商(OEM)減少車輛二氧化碳排放策略的關鍵要素,受到歐盟(EU)和美國等主要地區的嚴格法規和期限的推動。然而,在電池製造、原料加工和充電過程中會產生大量排放。
  • Frost 的觀點:原始設備製造商需要分析電動車整個生命週期內的總排放,以確保透明度並讓消費者相信其真正的永續性。

地緣政治動盪

  • 原因:某些地區(包括非洲、南美洲和中國)對提取電動車電池原料的道德和環境實踐的擔憂日益加劇。
  • 這些擔憂在新冠疫情期間加劇,促使歐盟解決潛在的供應鏈脆弱性,特別是對包括中國在內的某些市場的依賴。
  • Frost的觀點歐盟加強對電池生產和採購的監管,目的是減少對任何一個國家的依賴,實現原料來源多樣化(促進可回收性),並建立安全和永續的供應鏈。
  • 此外,美國優先考慮負責任的做法和供應鏈多樣化,以減輕道德擔憂並限制對關鍵原料的獲取。

產業融合

  • 原因:減少電動車的碳排放需要多個行業共同努力,包括整個生命週期,從採礦和精煉到電池陽極和陰極製造、車輛組裝、充電基礎設施的電網電源配置以及電池報廢(EOL)解決方案。
  • Frost的觀點:為了實現生命週期二氧化碳中和,必須實施強制性的二氧化碳追蹤計劃,這將確保所有行業參與者了解其對環境的影響,並激勵他們採用更清潔的流程和設計,最終加速向更永續的過渡。

市場/細分市場/專案領域

本研究重點關注碳中和電動汽車電池的策略,包括:

  • 生命週期排放概念概述
  • 對政府、原始設備製造商和電池製造商的影響
  • 改善電動車碳足跡的新技術

目標區域

  • 北美洲
  • 歐洲
  • 亞太地區(APAC)
  • 世界其他地區*(RoW)

促進因素

  • 環境議題與消費者偏好
  • 永續性取得關鍵材料
  • 法規政策

成長抑制因素

  • 技術成熟度
  • 投資放緩
  • 電池製造和供應鏈挑戰

目錄

戰略問題

  • 為何成長變得越來越困難?
  • The Strategic Imperative 8(TM)
  • 三大戰略挑戰對電動車產業的影響

介紹

  • 分析範圍
  • 引言研究目的與目標
  • 主要 OEM 和電池製造商
  • 主要趨勢
  • 成長動力
  • 成長抑制因素

生命週期評估

  • 純電動車:關鍵生命週期階段
  • 鋰蘊藏量的地理集中度
  • 鈷蘊藏量的地理集中度
  • 鎳蘊藏量的地理集中度
  • 錳礦蘊藏量的地理集中度
  • 原料開採概述
  • 活性物質生產過程與能源需求
  • 歐洲再生能源來源佔有率
  • 清潔能源來源佔比及充電站數量對比
  • 電池的二次使用取決於其一次使用後的容量
  • 電池回收的SWOT分析
  • 電動車電池回收政策:歐盟、英國和美國
  • 電動車電池回收政策:電動車電池回收政策:加拿大、中國
  • 日本和印度的電動車電池回收政策
  • 歐盟和中國制定了強而有力的電動車電池回收政策
  • 案例研究:沃爾沃EX30生命週期評估

OEM戰略

  • 主要主機廠脫碳目標
  • 主要整車排放減排目標
  • 各地區OEM電動車銷售目標
  • 歐洲OEM廠商的電動車電池回收策略及夥伴關係
  • 其他原始設備製造商的電動車電池回收策略和夥伴關係
  • BMW Group - 永續性的領導者
  • Mercedes-Benz - 致力於永續性,行動綠色
  • Volkswagen Group-goTOzero
  • Volvo Cars - 永續性是未來成功的關鍵
  • Stellantis -永續旅遊技術公司 Dare Forward2030
  • Renault Group - 未來是中性的
  • General Motors - 積極追求零排放世界的願景
  • Ford Motor Company - 建立更美好的世界
  • Hyundai Motor Group - 人類進步
  • Toyota - 碳中和之路
  • 原始設備製造商對碳補償的依賴

成長機會宇宙

  • 成長機會1:循環設計與改良的電池製造
  • 成長機會2:促進廢棄電池在回收前用於其他用途
  • 成長機會3:增加電池回收基礎設施的財務投資

附錄與後續步驟

  • 成長機會的益處和影響
  • 後續步驟
  • 附表
  • 免責聲明
簡介目錄
Product Code: MH71-45

Regulatory Support, Battery Innovations, Recycling Advancements, Renewable Integration, and Transparent Supply Chains are Driving Transformational Growth Toward a Carbon-neutral EV Ecosystem

This study provides a comprehensive analysis of strategies for achieving carbon neutrality in battery electric vehicles (BEVs), with a focus on the life cycle emissions of EV batteries. It explores the concept of life cycle emissions, assessing the environmental impact from raw material extraction to the end-of-life (EOL) phase. The study examines the roles and implications of governments, original equipment manufacturers (OEMs), and battery manufacturers in shaping decarbonization strategies for road transport. In addition, it evaluates the effectiveness of existing and emerging policies aimed at reducing BEVs' carbon footprint.

A key focus is on new technologies that contribute to carbon neutrality, including advancements in battery chemistry, sustainable material sourcing, and improved recycling processes. The study also highlights the growth opportunities arising from the transition to carbon-neutral transportation, identifying key trends and potential areas of innovation. By analyzing these elements, the study provides valuable insights into the evolving landscape of BEV sustainability and the collaborative efforts required to achieve long-term carbon neutrality goals.

The Impact of the Top 3 Strategic Imperatives on the Electric Vehicles Industry

Transformative Megatrends

  • Why: Electric vehicles (EVs) are a key component of OEMs' strategies to reduce vehicles' CO2 footprint, driven by strict regulations and deadlines across key regions such as the European Union (EU) and the United States. However, they contribute significant emissions during the battery manufacturing, raw materials processing, and charging phases.
  • Frost Perspective: OEMs must analyze the overall emissions of their EVs during the entire life cycle to be transparent and convince consumers of their true sustainability credentials.

Geopolitical Chaos

  • Why: Growing concerns surround the ethical and environmental practices associated with raw material extraction for EV batteries in certain regions, including Africa, South America, and China.
  • These concerns intensified during the COVID-19 pandemic, prompting the EU to address potential supply chain vulnerabilities, particularly their dependence on specific markets, including China.
  • Frost Perspective: The EU is implementing stricter regulations on battery production and sourcing, aiming to reduce dependence on a single country, diversify raw material sources (push for recyclability), and develop a secure and sustainable supply chain.
  • Moreover, the United States is prioritizing responsible practices and supply chain diversification to mitigate ethical concerns and curb critical materials availability.

Industry Convergence

  • Why: Reducing EVs' carbon footprint requires collaboration across multiple industries. This includes the entire life cycle-from mining and refining to battery anode/cathode manufacturing, vehicle assembly, the electricity mix of the grid for charging infrastructure, and end-of-life (EOL) solutions for batteries.
  • Frost Perspective: To achieve total life cycle CO2 neutrality, mandatory CO2 tracking plans must be implemented. This will empower all industry participants to understand their environmental impact and incentivize them to adopt cleaner processes and designs, ultimately accelerating the transition to a more sustainable future.

Market/Segment/Program Area

The study covers strategies for carbon neutrality for EV batteries with a focus on:

  • An overview of the life cycle emissions concept
  • Implications for governments, OEMs, and battery manufacturers
  • New technologies that will improve EVs' carbon footprint

Geographic Scope

  • North America
  • Europe
  • Asia-Pacific (APAC)
  • Rest-of-World (RoW)*

Growth Drivers

  • Environmental Concerns and Consumer Preferences
  • Sustainability to Access Critical Materials
  • Regulations and Policies

Growth Restraints

  • Technology Maturity
  • Investment Slowdown
  • Challenges in Battery Manufacturing and Supply Chains

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Electric Vehicles Industry

Introduction

  • Scope of Analysis
  • Introduction: Research Aims and Objectives
  • Key OEMs and Battery Manufacturers
  • Key Trends
  • Growth Drivers
  • Growth Restraints

Life Cycle Assessment

  • Battery Electric Vehicles: Key Life Cycle Phases
  • Geographic Concentration of Lithium Reserves
  • Geographic Concentration of Cobalt Reserves
  • Geographic Concentration of Nickel Reserves
  • Geographic Concentration of Manganese Reserves
  • Raw Materials Mining Overview
  • Process and Energy Demand for Active Material Production
  • Share of Renewable Sources in Europe
  • Share of Clean Energy Sources Versus Number of Charging Stations
  • Batteries' Second-Life Usage Depends on Their Capacity after the End of Their First Life
  • Battery Recycling SWOT Analysis
  • EV Battery Recycling Policies: EU, UK, and US
  • EV Battery Recycling Policies: Canada and China
  • EV Battery Recycling Policies: Japan and India
  • EU and China Have Developed Strong EV Battery Recycling Policies
  • Case Study: Volvo EX30 Life Cycle Assessment

OEM Strategies

  • Decarbonization Targets for Major OEMs
  • Major OEMs' Performance Targets to Reduce Emissions
  • OEMs' EV Sales Target by Region
  • European OEMs' Strategies and Partnerships for EV Battery Recycling
  • Other OEMs' Strategies and Partnerships for EV Battery Recycling
  • BMW Group-Leading Sustainability
  • Mercedes-Benz-Commitment to Sustainability We Move Green
  • Volkswagen Group-goTOzero
  • Volvo Cars-Sustainability is the Key to Future Success
  • Stellantis-Transforming into a Sustainable Mobility Technology Company Dare Forward 2030
  • Renault Group-The Future is NEUTRAL
  • GM-Actively Pursuing a Vision of a World with Zero Emissions
  • Ford Motor Company-Building a Better World
  • Hyundai Motor Group-Progress for Humanity
  • Toyota-On the Road to Carbon Neutrality
  • OEM Reliance on Carbon Offsets

Growth Opportunity Universe

  • Growth Opportunity 1: Designing for Circularity and Battery Manufacturing Improvement
  • Growth Opportunity 2: Promoting the Use of EOL Batteries in Other Applications Before Recycling
  • Growth Opportunity 3: Increasing Financial Investments in Battery Recycling Infrastructure

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer