甲烷熱解制氫:創新與成長機會
市場調查報告書
商品編碼
1348572

甲烷熱解制氫:創新與成長機會

Methane Pyrolysis-based Hydrogen Production: Innovation and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

甲烷熱解透過經濟高效、低排放氣體的氫氣生產促進氫氣經濟

隨著向低碳、以氫為基礎的經濟的轉變,能源產業正在尋求比蒸汽甲烷改性(SMR)碳排放顯著降低並且比現有的電解的綠氫生產更經濟的替代技術。我們鼓勵尋找更具成本效益和永續的技術,例如甲烷熱解(綠松石氫)。透過有效利用固態碳,進一步提高了甲烷熱解的成本效益,這是其他競爭技術無法產生的。所生產的固態碳在電子、儲能系統、輪胎生產、農業添加劑和建築材料等多個領域具有潛在的應用前景。新興企業目前處於甲烷熱解研究、開發和商業化的前沿。研究包括甲烷分解的熱分解法、熱催化分解法和等離子體分解法,每種方法都有其自身的優點。

Frost & Sullivan 的研究首先對甲烷熱解和傳統制氫技術(SMR 和水電電解)進行比較分析。它涵蓋了甲烷熱解制氫的各個方面,並概述了熱解、熱催化和等離子體熱解過程。我們評估每種方法的優勢和挑戰,並介紹每個領域的先驅公司。此外,它還提供了對技術促進因素和挑戰的見解,並提供了與甲烷熱解相關的各種過程的技術經濟分析。它還對專利格局和成長機會進行了全面分析,預計這些成長機會將在推動甲烷熱解技術的採用方面發揮關鍵作用。

目錄

戰略問題

  • 為什麼成長如此困難?策略要務 8 (TM):阻礙成長的要素
  • The Strategic Imperative 8(TM)
  • 三大戰略重點對甲烷熱解制氫的影響
  • 成長機會推動的Growth Pipeline Engine(TM)
  • 調查方法

成長機會分析

  • 分析範圍
  • 成長促進因素
  • 成長阻礙因素
  • 低碳氫技術:比較

甲烷熱解解制氫:技術分析

  • 調查概述和細分
  • 甲烷熱解:技術概述與價值鏈
  • 在高溫環境下將甲烷轉化為氫氣和低碳的熱解
  • 催化熱解加速甲烷分解成氫氣和優質固體碳。
  • 基於等離子體的熱解產生具有高甲烷轉化率的高純度氫氣
  • 甲烷熱解技術:比較分析

創新生態系統

  • 甲烷的催化分解、非催化熱解和等離子體分解:主要參與者
  • 整體式大型甲烷熱解廠:案例研究與路線圖

成長分析

  • 美國領先基於甲烷熱解制氫的專利格局
  • 新興經濟體主導資金籌措生態系統

充滿成長機會的世界

  • 成長機會1:基於可再生天然氣(RNG)的氫氣生產可顯著減少碳排放
  • 成長機會 2:來自甲烷熱解的石墨烯和奈米管作為額外的收益來源
  • 成長機會3:利用先進核子反應爐在甲烷熱解中產生熱量

附錄

  • 技術成熟度等級 (TRL):解釋

下一步

  • 下一步
  • 為什麼是霜凍,為什麼是現在?
  • 免責聲明
簡介目錄
Product Code: DABA

Methane Pyrolysis is Advancing the Hydrogen Economy through Cost-effective and Low-emission Hydrogen Production

The shift to a low-carbon, hydrogen-based economy is prompting the energy industry to explore more cost-effective and sustainable technologies, including methane pyrolysis (turquoise hydrogen), which offers significantly lower carbon emissions than steam methane reforming (SMR) and provides a more economical alternative to existing electrolysis-based green hydrogen production. Methane pyrolysis's cost-effectiveness can be further enhanced through the effective utilization of the solid carbon byproduct, which none of the other competing technologies produce. The solid carbon produced has potential applications across diverse sectors, such as electronics, energy storage systems, tire production, agricultural additives, and construction materials. Currently, emerging companies are at the forefront of methane pyrolysis research, development, and commercialization. Research encompasses thermal, thermocatalytic, and plasma decomposition methods for methane cracking, with each method offering unique advantages.

This Frost & Sullivan study opens by offering a comparative analysis of methane pyrolysis with conventional hydrogen production technologies (SMR and water electrolysis). It covers multiple aspects of hydrogen production through methane pyrolysis, providing an overview of the thermal, thermocatalytic, and plasma pyrolysis processes. The study evaluates each method's strengths and challenges and highlights the pioneering companies in each segment. In addition, it offers insight into the technology's driving forces and challenges and provides a techno-economic analysis of the various processes associated with methane pyrolysis. It also covers the patent landscape and offers a comprehensive analysis of the growth opportunities projected to play a pivotal role in driving the adoption of methane pyrolysis technology.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on Methane Pyrolysis-based Hydrogen Production
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Growth Drivers
  • Growth Restraints
  • Low-carbon Hydrogen Production Technologies: A Comparison

Methane Pyrolysis-based Hydrogen Production: Technology Analysis

  • Research Summary and Segmentation
  • Methane Pyrolysis: Technology Description and Value Chain
  • Thermal Pyrolysis Converts Methane into Hydrogen and Low-grade Carbon in a High-temperature Environment
  • Catalytic Pyrolysis Accelerates Methane's Breakdown into Hydrogen and High-quality Solid Carbon
  • Plasma-based Pyrolysis Facilitates a High Methane Conversion Rate to Produce High-purity Hydrogen
  • Methane Pyrolysis Technologies: A Comparative Analysis

Innovation Ecosystem

  • Catalytic, Noncatalytic Thermal, and Plasma Decomposition of Methane: Important Participants
  • Monolith's Large-scale Methane Pyrolysis Plant: Case Study and Road Map

Growth Analysis

  • The United States Leads the Methane Pyrolysis-based Hydrogen Production Patent Landscape
  • Developed Economies Dominate the Funding Ecosystem

Growth Opportunity Universe

  • Growth Opportunity 1: Renewable Natural Gas (RNG)-based Hydrogen Production for Drastically Reduced Carbon Emissions
  • Growth Opportunity 2: Graphene and Nanotubes from Methane Pyrolysis as Additional Revenue Streams
  • Growth Opportunity 3: Utilizing Advanced Nuclear Reactors for Heat Generation in Methane Pyrolysis

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer