封面
市場調查報告書
商品編碼
1920587

全球直接鋰萃取 (DLE) 市場 (2026-2036)

The Global Direct Lithium Extraction Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 245 Pages, 110 Tables, 20 Figures | 訂單完成後即時交付

價格

直接鋰萃取 (DLE) 市場是關鍵礦物產業成長最快的細分市場之一,其成長主要受電動車和儲能應用領域鋰需求激增的推動。 DLE 技術相比傳統鋰萃取方法具有顯著優勢。傳統的蒸發池製程需要 12-24 個月,鋰回收率僅為 40-60%。相較之下,DLE 系統可在數小時至數天內完成萃取,回收率可達 90% 以上。這種更高的效率,加上顯著降低的用水量和較小的佔地面積,使得 DLE 在環境法規日益嚴格、鋰產區水資源競爭日益激烈的背景下,成為極具吸引力的選擇。

此技術領域包含多種不同的方法,每種方法都適用於不同的鹽水化學性質和操作要求。離子交換技術因其成熟的可擴展性和性能,目前在商業應用中佔據主導地位。吸附系統由於效率更高、營運成本更低,正在新項目中逐漸獲得市場佔有率。膜萃取、電化學萃取和溶劑萃取方法目前主要處於研發階段,但在某些應用領域,尤其是在高鹽度鹽水環境中,展現出良好的應用前景。

自2020年以來,全球直接鋰提取(DLE)專案投資額已超過30億美元,市場正吸引大量投資。大型礦業公司、汽車製造商和電池製造商正透過合作、收購和直接專案開發等方式進行策略性佈局。該行業面臨的主要挑戰包括:如何將技術從試點階段擴展到商業營運階段;如何使解決方案適應不同的鹽水化學成分;以及如何應對專案開發過程中的資本密集問題。與吸附劑耐久性、膜污染和製程優化相關的技術障礙仍需要不斷創新。

市場成長軌跡反映了關鍵礦產生產中供應鏈安全和永續性的更廣泛趨勢。北美和歐洲政府支持國內鋰生產的政策,以及對傳統採礦方法日益嚴格的環境監管,正在加速直接鋰提取(DLE)技術的應用。隨著技術的成熟和標準化程度的提高,專案開發成本和建設時間預計將會降低,從而可能在2020年代末進一步加速市場擴張。

直接鋰萃取技術正在革新傳統的鹽水蒸發和硬岩開採方法。它顯著縮短了處理時間,回收率高達90%以上,並降低​​了對環境的影響,使得開發以前無利可圖的鋰資源成為可能,例如地熱鹵水、油田採出水和低濃度大陸鹵水。

本報告研究了全球直接鋰提取 (DLE) 市場,並詳細分析了 DLE 技術、市場動態、競爭格局以及到 2036 年的成長預測。

目錄

第一章 摘要整理

  • 市場概覽
    • 鋰的生產與需求
  • 傳統萃取法存在的問題
  • DLE 方法
    • 技術優勢、劣勢和成本
  • 直接鋰提取市場
    • 直接鋰提取市場成長軌跡
    • 市場預測(至 2036 年)
    • 各國 DLE 產量預測
    • 依技術類型劃分的 DLE 市場規模(2024-2036)
    • 主要市場細分
    • 短期展望(2024-2026)
    • 中期展望(2026-2030)
    • 長期展望(2030-2035)
  • 市場驅動因素
    • 電動車成長
    • 儲能需求
    • 政府政策
    • 技術進步
    • 永續發展目標
    • 供應安全
  • 市場挑戰
    • 技術壁壘
    • 經濟可行性
    • 規模化問題
    • 資源可用性
    • 監理障礙
    • 競爭
    • 供應鏈與地緣政治風險
  • 商業活動
    • 市場概覽
    • 全球鋰提取項目
    • DLE項目
    • 商業模式
    • 投資

第二章 引言

  • 鋰的應用
  • 鋰鹵水礦床
  • 定義與工作原理
    • 基本概念與機制
    • 製程化學
    • DLE的歷史與發展
  • DLE技術型
    • 鹵水資源
    • 硬岩資源
    • 沉積物包裹礦床
    • 離子交換
    • 吸附
    • 膜分離
    • 溶劑萃取
    • 電化學萃取
    • 化學萃取沉澱
    • 新型混合方法
  • 與傳統萃取法相比的優勢
    • 回收率
    • 環境影響
    • 處理時間
    • 產品純度
  • 直接液化能源 (DLE) 技術比較
  • 價格
  • 環境影響與永續性
  • 能源需求
  • 用水量
  • 回收率
    • 依技術型
    • 依資源類型
    • 優化潛力
  • 可擴充性
  • 資源分析
    • 鹽水資源
    • 黏土礦床
    • 地熱水
    • 資源品質評估
    • 可提取性

第三章 全球市場分析

  • 市場規模與成長
  • 區域市場佔有率
    • 北美
    • 南美
    • 亞太
    • 歐洲
  • 成本分析
    • 資本支出對比
    • 營運支出細分
    • 每噸成本分析
  • 供需動態
    • 當前供應
    • 需求預測
  • 法規
  • 競爭格局

第四章:公司簡介(70家公司簡介)

第五章:附錄

第六章:參考文獻

The Direct Lithium Extraction (DLE) market represents one of the fastest-growing segments in the critical minerals industry, driven by surging demand for lithium from electric vehicle and energy storage applications. DLE technologies offer significant advantages over traditional lithium extraction methods. Conventional evaporation pond processes can take 12-24 months and achieve lithium recovery rates of only 40-60%, while DLE systems can complete extraction in hours or days with recovery rates exceeding 90%. This efficiency gain, combined with substantially reduced water consumption and smaller physical footprints, makes DLE particularly attractive as environmental regulations tighten and water resources become increasingly contested in lithium-producing regions.

The technology landscape encompasses several distinct approaches, each suited to different brine chemistries and operational requirements. Ion exchange technologies currently dominate commercial implementations, benefiting from proven scalability and performance. Adsorption-based systems are gaining market share in new projects due to improved efficiency and lower operating costs. Membrane technologies, electrochemical extraction, and solvent extraction methods remain primarily in development phases but show promise for specific applications, particularly challenging brine environments.

The market has attracted substantial investment, with over USD 3 billion committed to DLE projects globally since 2020. Major mining companies, automotive manufacturers, and battery producers are taking strategic positions through partnerships, acquisitions, and direct project development. Key challenges facing the industry include scaling technologies from pilot to commercial operations, adapting solutions to diverse brine chemistries, and managing the capital-intensive nature of project development. Technical barriers around sorbent durability, membrane fouling, and process optimization continue to require innovation.

The market's growth trajectory reflects broader trends toward supply chain security and sustainability in critical mineral production. Government policies supporting domestic lithium production in North America and Europe, combined with increasing environmental scrutiny of traditional extraction methods, are accelerating DLE adoption. As technologies mature and standardisation emerges, project development costs and timelines are expected to decrease, potentially driving even faster market expansion through the end of the decade.

This authoritative market report delivers in-depth analysis of DLE technologies, market dynamics, competitive landscapes, and growth projections through 2036, providing essential intelligence for investors, technology developers, mining companies, and strategic decision-makers navigating the lithium supply chain revolution. Direct lithium extraction technologies are disrupting traditional brine evaporation and hard rock mining methods by offering dramatically faster processing times, higher recovery rates exceeding 90%, reduced environmental footprints, and the ability to unlock previously uneconomic lithium resources including geothermal brines, oilfield produced waters, and low-concentration continental brines.

Report Contents include:

  • Global lithium production and demand analysis 2020-2024
  • DLE project landscape and worldwide distribution
  • Lithium production forecast 2025-2036 by resource type
  • Supply versus demand outlook through 2035
  • Technology Analysis & Cost Comparison
    • Solar evaporation (traditional brine processing) - merits, demerits, cost analysis
    • Hard rock mining technologies - merits, demerits, cost analysis
    • Ion exchange DLE technologies - merits, demerits, cost analysis
    • Adsorption DLE technologies - merits, demerits, cost analysis
    • Membrane separation technologies - merits, demerits, cost analysis
    • Electrochemical extraction technologies - merits, demerits, cost analysis
  • DLE Market Size & Forecast
    • Market growth trajectory 2024-2036
    • DLE production forecast by country (ktpa LCE)
    • Market size by technology type 2024-2036
    • Market segmentation by brine type
    • Short-term outlook (2024-2026)
    • Medium-term forecasts (2026-2030)
    • Long-term predictions (2030-2036)
  • Market Drivers & Challenges
    • Electric vehicle growth impact
    • Energy storage demand projections
    • Government policies and incentives
    • Technological advancements and efficiency gains
    • Sustainability goals and ESG considerations
    • Supply security and geopolitical factors
    • Technical barriers and scale-up issues
    • Chinese adsorbent export controls and supply chain risks
  • DLE Technology Deep Dive
    • Ion exchange - resin-based systems, inorganic exchangers, hybrid systems
    • Adsorption - physical and chemical adsorption, ion sieves, sorbent composites
    • Membrane separation - pressure-assisted (RO, NF, UF, MF), potential-assisted (electrodialysis, CDI)
    • Solvent extraction including CO2-based systems
    • Electrochemical extraction - battery-based, intercalation cells, hybrid capacitive, flow-through systems
    • Chemical precipitation methods
    • Novel hybrid approaches
  • Comparative Analysis
    • Recovery rates by technology and resource type
    • Environmental impact and sustainability metrics
    • Energy requirements comparison
    • Water usage analysis
    • Scalability assessment
    • CAPEX and OPEX benchmarking
    • Cost per tonne analysis
  • Resource Analysis
    • Brine resources characterisation
    • Clay deposit potential
    • Geothermal waters assessment
    • Resource quality matrix and extraction potential
  • Global Market Analysis
    • Regional market share - North America, South America, Asia Pacific, Europe
    • Current and planned DLE projects database
    • Business models across the value chain
    • Investment trends and funding analysis
    • Regulatory landscape by region
    • Competitive positioning matrix
    • Patent filing trends 2015-2024
  • This report features detailed profiles of 70 leading companies shaping the direct lithium extraction industry including Adionics, Aepnus Technology, Altillion, American Battery Materials, Anson Resources, Arcadium Lithium, Albemarle Corporation, alkaLi, Aquatech, Arizona Lithium, BioMettallum, Century Lithium, CleanTech Lithium, Conductive Energy, Controlled Thermal Resources, Cornish Lithium, E3 Lithium Ltd, Ekosolve, ElectraLith, Electroflow Technologies, Ellexco, EnergyX, Energy Sourcer Minerals, Eon Minerals, Eramet, Evove, ExSorbiton, Geo40, Geolith, Go2Lithium (G2L), ILiAD Technologies, International Battery Metals (IBAT), Jintai Lithium, KMX Technologies, Lake Resources, Lanke Lithium, Lifthium Energy, Lihytech, Lilac Solutions and more......

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY

  • 1.1 Market Overview
    • 1.1.1 Lithium production and demand
      • 1.1.1.1 DLE Projects
      • 1.1.1.2 Global Lithium Production and Demand 2020-2024 (ktpa LCE)
      • 1.1.1.3 Lithium Production Forecast 2025-2036
  • 1.2 Issues with traditional extraction methods
  • 1.3 DLE Methods
    • 1.3.1 Technology Merits, Demerits, and Costs
      • 1.3.1.1 Solar Evaporation (Traditional Brine Processing)
        • 1.3.1.1.1 Merits
        • 1.3.1.1.2 Demerits
        • 1.3.1.1.3 Cost Analysis
      • 1.3.1.2 Hard Rock Mining
        • 1.3.1.2.1 Merits
        • 1.3.1.2.2 Demerits
        • 1.3.1.2.3 Cost Analysis
      • 1.3.1.3 Ion Exchange Technologies
        • 1.3.1.3.1 Merits
        • 1.3.1.3.2 Demerits
        • 1.3.1.3.3 Cost Analysis
      • 1.3.1.4 Adsorption Technologies
        • 1.3.1.4.1 Merits
        • 1.3.1.4.2 Demerits
        • 1.3.1.4.3 Cost Analysis
      • 1.3.1.5 Membrane Technologies
        • 1.3.1.5.1 Merits
        • 1.3.1.5.2 Demerits
        • 1.3.1.5.3 Cost Analysis
      • 1.3.1.6 Electrochemical Technologies
        • 1.3.1.6.1 Merits
        • 1.3.1.6.2 Demerits
        • 1.3.1.6.3 Cost Analysis
  • 1.4 The Direct Lithium Extraction Market
    • 1.4.1 Growth trajectory for The Direct Lithium Extraction market
    • 1.4.2 Market forecast to 2036
    • 1.4.3 DLE Production Forecast by Country (ktpa LCE)
    • 1.4.4 DLE Market Size by Technology Type (2024-2036)
    • 1.4.5 Key market segments
    • 1.4.6 Short-term outlook (2024-2026)
    • 1.4.7 Medium-term forecasts (2026-2030)
    • 1.4.8 Long-term predictions (2030-2035)
  • 1.5 Market Drivers
    • 1.5.1 Electric Vehicle Growth
    • 1.5.2 Energy Storage Demand
    • 1.5.3 Government Policies
    • 1.5.4 Technological Advancements
      • 1.5.4.1 Process improvements
      • 1.5.4.2 Efficiency gains
      • 1.5.4.3 Cost reduction
    • 1.5.5 Sustainability Goals
    • 1.5.6 Supply Security
  • 1.6 Market Challenges
    • 1.6.1 Technical Barriers
    • 1.6.2 Economic Viability
    • 1.6.3 Scale-up Issues
    • 1.6.4 Resource Availability
    • 1.6.5 Regulatory Hurdles
    • 1.6.6 Competition
      • 1.6.6.1 Traditional methods
      • 1.6.6.2 Alternative technologies
    • 1.6.7 Supply Chain and Geopolitical Risks
      • 1.6.7.1 Chinese Adsorbent Export Controls
  • 1.7 Commercial activity
    • 1.7.1 Market map
    • 1.7.2 Global lithium extraction projects
    • 1.7.3 DLE Projects
    • 1.7.4 Business models
    • 1.7.5 Investments

2 INTRODUCTION

  • 2.1 Applications of lithium
  • 2.2 Lithium brine deposits
  • 2.3 Definition and Working Principles
    • 2.3.1 Basic concepts and mechanisms
    • 2.3.2 Process chemistry
    • 2.3.3 History & development of DLE
  • 2.4 Types of DLE Technologies
    • 2.4.1 Brine Resources
    • 2.4.2 Hard Rock Resources
      • 2.4.2.1 Spodumene Upgrading
      • 2.4.2.2 Spodumene Refining
      • 2.4.2.3 Logistics
    • 2.4.3 Sediment-hosted deposits
    • 2.4.4 Ion Exchange
      • 2.4.4.1 Resin-based systems
      • 2.4.4.2 Inorganic ion exchangers
      • 2.4.4.3 Hybrid systems
      • 2.4.4.4 Companies
      • 2.4.4.5 SWOT analysis
    • 2.4.5 Adsorption
      • 2.4.5.1 Commercial Dominance of Adsorption DLE
      • 2.4.5.2 Adsorption vs ion exchange
      • 2.4.5.3 Physical adsorption
      • 2.4.5.4 Chemical adsorption
      • 2.4.5.5 Selective materials
        • 2.4.5.5.1 Ion sieves
        • 2.4.5.5.2 Sorbent Composites
      • 2.4.5.6 Companies
      • 2.4.5.7 SWOT analysis
    • 2.4.6 Membrane Separation
      • 2.4.6.1 Pressure-assisted
        • 2.4.6.1.1 Reverse osmosis (RO)
        • 2.4.6.1.2 Membrane fouling
        • 2.4.6.1.3 Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF)
      • 2.4.6.2 Potential-assisted
        • 2.4.6.2.1 Electrodialysis
        • 2.4.6.2.2 Bipolar
        • 2.4.6.2.3 Capacitive deionization (CDI)
        • 2.4.6.2.4 Membrane distillation (MD)
      • 2.4.6.3 Companies
      • 2.4.6.4 SWOT analysis
    • 2.4.7 Solvent Extraction
      • 2.4.7.1 Overview
        • 2.4.7.1.1 CO2-based extraction systems
      • 2.4.7.2 Companies
      • 2.4.7.3 SWOT analysis
    • 2.4.8 Electrochemical extraction
      • 2.4.8.1 Overview
      • 2.4.8.2 Cost Analysis and Comparison
      • 2.4.8.3 Advantages of Electrochemical Extraction
      • 2.4.8.4 Battery-based
      • 2.4.8.5 Intercalation Cells
      • 2.4.8.6 Hybrid Capacitive
      • 2.4.8.7 Modified Electrodes
      • 2.4.8.8 Flow-through Systems
      • 2.4.8.9 Companies
      • 2.4.8.10 SWOT analysis
    • 2.4.9 Chemical precipitation
      • 2.4.9.1 Overview
      • 2.4.9.2 SWOT analysis
    • 2.4.10 Novel hybrid approaches
  • 2.5 Advantages Over Traditional Extraction
    • 2.5.1 Recovery rates
      • 2.5.1.1 Recovery Rate Differential: Economic and Resource Implications
      • 2.5.1.2 Resource Value Implications
    • 2.5.2 Environmental impact
    • 2.5.3 Processing time
    • 2.5.4 Product purity
  • 2.6 Comparison of DLE Technologies
  • 2.7 Prices
  • 2.8 Environmental Impact and Sustainability
  • 2.9 Energy Requirements
  • 2.10 Water Usage
  • 2.11 Recovery Rates
    • 2.11.1 By technology type
    • 2.11.2 By resource type
    • 2.11.3 Optimization potential
  • 2.12 Scalability
  • 2.13 Resource Analysis
    • 2.13.1 Brine Resources
    • 2.13.2 Clay Deposits
    • 2.13.3 Geothermal Waters
    • 2.13.4 Resource Quality Assessment
    • 2.13.5 Extraction Potential

3 GLOBAL MARKET ANALYSIS

  • 3.1 Market Size and Growth
  • 3.2 Regional Market Share
    • 3.2.1 North America
    • 3.2.2 South America
    • 3.2.3 Asia Pacific
    • 3.2.4 Europe
  • 3.3 Cost Analysis
    • 3.3.1 CAPEX comparison
    • 3.3.2 OPEX breakdown
    • 3.3.3 Cost Per Ton Analysis
  • 3.4 Supply-Demand Dynamics
    • 3.4.1 Current supply
    • 3.4.2 Demand projections
  • 3.5 Regulations
  • 3.6 Competitive Landscape

4 COMPANY PROFILES (70 company profiles)

5 APPENDICES

  • 5.1 Glossary of Terms
  • 5.2 List of Abbreviations
  • 5.3 Research Methodology

6 REFERENCES

List of Tables

  • Table 1. Lithium sources and extraction methods.
  • Table 2. Global Lithium Production 2023, by country.
  • Table 3. Factors Affecting Lithium Production Outlook.
  • Table 4. Worldwide Distribution of DLE Projects.
  • Table 5. Announced vs Assumed DLE Outlook.
  • Table 6. Global Lithium Production and Demand 2020-2024 (ktpa LCE).
  • Table 7. Lithium Production Forecast 2025-2036.
  • Table 8. Li Production Contribution by Resource Type (%).
  • Table 9. Li Production Contribution from Brine Extraction (ktpa LCE).
  • Table 10. Lithium Supply vs Demand Outlook 2023-2035 (ktpa LCE).
  • Table 11. Comparison of lithium extraction methods.
  • Table 12. DLE Technologies Comparison.
  • Table 13. Solar Evaporation Technologies Merits/
  • Table 14. Solar Evaporation Technologies Demerits.
  • Table 15.Solar Evaporation Technologies Cost Analysis.
  • Table 16. Hard Rock Mining Technologies Merits.
  • Table 17. Hard Rock Mining Technologies Demerits.
  • Table 18. Hard Rock Mining Technologies Cost Analysis.
  • Table 19. Ion Exchange Technologies Merits.
  • Table 20. Ion Exchange Technologies Demerits.
  • Table 21. Ion Exchange Technologies Cost Analysis.
  • Table 22. Adsorption DLE technology Merits.
  • Table 23. Adsorption DLE technology Demerits.
  • Table 24. Adsorption DLE technology Cost Analysis.
  • Table 25. Membrane technologies Merits.
  • Table 26. Membrane technologies Demerits.
  • Table 27. Membrane Technologies Cost Analysis.
  • Table 28. Electrochemical Technologies Merits.
  • Table 29. Electrochemical Technologies Demerits.
  • Table 30. Electrochemical DLE technology Cost Analysis.
  • Table 31. Global DLE Market Size 2020-2024.
  • Table 32. DLE Market Growth Projections 2024-2036.
  • Table 33. Lithium Market Size Comparison by Segment (2024-2036)
  • Table 34. DLE Market Value Drivers Analysis
  • Table 35. DLE Market Value Drivers Analysis
  • Table 36. DLE Production Forecast by Country (ktpa LCE).
  • Table 37. DLE Market Size by Technology Type (2024-2036).
  • Table 38. DLE forecast segmented by brine type.
  • Table 39. Direct Lithium Extraction Key Market Segments.
  • Table 40. Market Drivers for DLE.
  • Table 41. Market Challenges in Direct Lithium Extraction.
  • Table 42. Alternative Technologies Comparison.
  • Table 43. Current Supply Chain Structure.
  • Table 44. Risk Mitigation Strategies.
  • Table 45. Global lithium extraction projects.
  • Table 46. Current and Planned DLE Projects.
  • Table 47. Traditional Brine Operations.
  • Table 48. Hard Rock Operations.
  • Table 49. Conversion Plants.
  • Table 50. Business Models by DLE Player Activity.
  • Table 51. Business Models by Li Recovery Process.
  • Table 52. DLE Investments.
  • Table 53. Lithium applications.
  • Table 54. Types of lithium brine deposits.
  • Table 55. Existing and emerging methods for lithium mining & extraction.
  • Table 56. Timeline of DLE Commercial Development:
  • Table 57. Types of DLE Technologies.
  • Table 58. Brine Evaporation vs Brine DLE Comparison.
  • Table 59. Commercial Hard Rock (Spodumene) Projects.
  • Table 60. Companies in Sedimentary Lithium Processing
  • Table 61. Ion exchange processes for lithium extraction.
  • Table 62. Ion Exchange DLE Projects and Companies.
  • Table 63. Companies in ion exchange DLE.
  • Table 64. Adsorption vs Absorption.
  • Table 65. Adsorption Processes for Lithium Extraction.
  • Table 66. Adsorption vs ion exchange.
  • Table 67. Types of Sorbent Materials.
  • Table 68. Commercial brine evaporation projects.
  • Table 69. Comparison of Al/Mn/Ti-based Sorbents.
  • Table 70. Adsorption DLE Projects.
  • Table 71. Companies in adsorption DLE.
  • Table 72. Membrane processes for lithium recovery.
  • Table 73. Membrane Materials.
  • Table 74. Membrane Filtration Comparison.
  • Table 75. Potential-assisted Membrane Technologies.
  • Table 76. Companies in membrane technologies for DLE.
  • Table 77. Membrane technology developers by Li recovery process.
  • Table 78. Solvent extraction processes for lithium extraction.
  • Table 79. Companies in solvent extraction DLE.
  • Table 80. Electrochemical technologies for lithium recovery.
  • Table 81. Companies in electrochemical extraction DLE.
  • Table 82. Chemical Precipitation Agents.
  • Table 83. Novel Hybrid DLE Approaches.
  • Table 84. Cost Comparison: DLE vs Traditional Methods.
  • Table 85. Recovery Rate Comparison.
  • Table 86. Environmental Impact Comparison.
  • Table 87. Processing Time Comparison.
  • Table 88. Product Purity Comparison.
  • Table 89. Comparison of DLE Technologies.
  • Table 90. Lithium Prices 2019-2024 (Battery Grade Li2CO3).
  • Table 91. Energy Consumption Comparison.
  • Table 92. Water Usage by Technology Type.
  • Table 93. Recovery Rates Comparison.
  • Table 94. Recovery Rates By Technology Type.
  • Table 95. Recovery Rates By Resource Type.
  • Table 96. Global Lithium Resource Distribution,
  • Table 97. Quality Parameters.
  • Table 98. Brine Chemistry Comparison.
  • Table 99. Resource Quality Matrix.
  • Table 100. Extraction Potential by Resource Type.
  • Table 101. Global DLE Market Size by Region.
  • Table 102. CAPEX Breakdown by Technology.
  • Table 103. Cost Comparisons Between Lithium Projects
  • Table 104. OPEX Breakdown Table (USD/tonne LCE).
  • Table 105. Production Cost Comparison (USD/tonne LCE).
  • Table 106. Sustainability Comparisons.
  • Table 107. Regulations and incentives related to lithium extraction and mining.
  • Table 108. DLE Patent Filing Trends 2015-2024.
  • Table 109. Glossary of Terms.
  • Table 110. List of Abbreviations.

List of Figures

  • Figure 1. Schematic of a conventional lithium extraction process with evaporation ponds.
  • Figure 2. Schematic for a direct lithium extraction (DLE) process. .
  • Figure 3. Global DLE Market Size 2020-2024.
  • Figure 4. DLE Market Growth Projections 2024-2036.
  • Figure 5. Market map of DLE technology developers.
  • Figure 6. Direct Lithium Extraction Process.
  • Figure 7. Direct lithium extraction (DLE) technologies.
  • Figure 8. Ion Exchange Process Flow Diagram.
  • Figure 9. SWOT analysis for ion exchange technologies.
  • Figure 10. SWOT analysis for adsorption DLE.
  • Figure 11. Membrane Separation Schematic.
  • Figure 12. SWOT analysis for membrane DLE.
  • Figure 13. SWOT analysis for solvent extraction DLE.
  • Figure 14. SWOT analysis for electrochemical extraction DLE.
  • Figure 15. SWOT analysis for chemical precipitation.
  • Figure 16. Conventional vs. DLE processes.
  • Figure 17. Global DLE Market Size by Region.
  • Figure 18. Competitive Position Matrix.
  • Figure 19. Flionex-R process.
  • Figure 20. Volt Lithium Process.