直接鋰開採的全球市場(2026年~2036年)
市場調查報告書
商品編碼
1744006

直接鋰開採的全球市場(2026年~2036年)

The Global Direct Lithium Extraction Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 205 Pages, 99 Tables, 20 Figures | 訂單完成後即時交付

價格

全球直接鋰提取 (DLE) 市場代表著鋰礦開採行業的轉型,它已成為彌合傳統採礦限制與日益增長的全球需求之間差距的關鍵解決方案。在電動車革命、再生能源儲存規模擴大以及便攜式電子產品廣泛應用的推動下,鋰消費量持續呈現前所未有的成長軌跡,DLE 技術已成為永續鋰供應鏈的關鍵推動因素。

市場動態揭示了鋰資源分佈與目前生產方法之間存在顯著的不匹配。鹽水資源約佔全球鋰儲量的 60%,但僅佔總產量的 35%,主要是由於傳統蒸發池方法的限制。這種差異凸顯了 DLE 技術可以釋放的巨大潛力,尤其是在該行業尋求實現供應來源多元化並降低地域集中風險的當下。傳統利用蒸發池萃取鹵水的方法面臨巨大的操作限制,處理時間長達12-24個月,回收率僅40-60%。這些限制,加上特定的氣候和地理條件,使得鹵水提取的競爭力歷來不及硬岩開採。 DLE技術從根本上改變了這一現狀,它能夠快速提取鋰,回收率超過80-95%,同時減少了環境足跡,並擴大了可提取鹵水資源的範圍。

DLE市場上有六種不同的技術類別,每種技術都針對特定的操作課題和鹵水成分。目前,基於吸附的DLE技術在商業化部署中處於領先地位,尤其是在阿根廷和中國,它採用鋁衍生吸附劑和水相解吸製程。離子交換技術已證明能夠高效處理鋰濃度低於100毫克/公升的低品位鹵水,並生產出鋰濃度超過2,000毫克/公升的高濃度洗脫液。該技術具有顯著的營運優勢,因為它消除了預濃縮和後濃縮的要求,但由於擔心酸處理和材料降解,需要持續監測。

新的DLE技術,包括膜分離、電化學萃取和化學沉澱,正處於從中試示範到實驗室研究的不同開發階段。這些技術可望提高選擇性並降低化學品消耗,但仍需進行商業驗證。值得注意的是,由於鹽水成分的變化,每種技術都需要量身定制的方法才能達到最佳性能,業界承認,沒有通用的DLE解決方案。

儘管DLE的原理很有前景,但它在實施方面仍面臨課題,包括技術驗證、與傳統方法的經濟競爭以及對永續性指標改進的需求。然而,持續的技術進步、日益增長的商業部署以及不斷提升的行業專業知識將繼續應對這些課題,使DLE成為可持續高效滿足未來鋰需求的基礎技術。

預計到2036年,鋰礦開採產業的複合年增長率將達到9.7%,而DLE(直液鋰)產業將脫穎而出,達到19.6%的驚人複合年增長率。這一令人印象深刻的成長軌跡反映了該技術在開採先前難以開採的鋰資源的同時,應對傳統提取方法面臨的重大可持續性課題的潛力。

市場動態揭示了誘人的機遇,因為鹵水資源擁有巨大的未開發潛力。鹵水資源佔全球鋰儲量的60%,但僅貢獻了目前產量的35%。 DLE技術從根本上改變了這一現狀,其回收率高達80-95%,而傳統蒸發池的回收率僅為40-60%,並將處理時間從12-24個月縮短至數小時或數天。這種顯著的效率提升,加上顯著減少的環境足跡和增強的ESG合規性,使DLE成為下一代鋰生產的首選解決方案。

本報告提供全球直接鋰開採市場相關調查,鋰的生產和需求的分析,市場成長軌道和投資機會,各技術的評估等資訊。

目錄

第1章 摘要整理

  • 市場概要
    • 鋰的生產和需求
  • 傳統的開採方法的問題點
  • DLE法
    • 技術的優點,缺點,成本
  • 直接鋰開採市場
    • 直接鋰提取市場的成長軌跡
    • 市場預測(截至 2036 年)
    • 各國家 DLE 產量預測(千噸/年,LCE)
    • 各技術類型 DLE 市場規模(2024-2036 年)
    • 主要細分市場
    • 短期展望(2024-2026 年)
    • 中期預測(2026-2030)
    • 長期預測 (2030-2035)
  • 推動市場要素
    • 電動車的成長
    • 儲能需求
    • 政府政策
    • 技術進步
    • 永續發展目標
    • 供應安全
  • 市場課題
    • 技術障礙
    • 經濟可行性
    • 規模化問題
    • 資源可用性
    • 監理障礙
    • 競爭
  • 商業活動
    • 市場地圖
    • 全球鋰開採計劃
    • DLE計劃
    • 經營模式
    • 投資

第2章 簡介

  • 鋰的應用
  • 鋰鹵水礦床
  • 定義與工作原理
  • DLE 技術的類型
  • 相對於傳統萃取方法的優勢
  • DLE 技術比較
  • 價格
  • 環境影響與永續性
  • 能源需求
  • 用水量
  • 回收率
  • 可擴充性
  • 資源分析

第3章 全球市場的分析

  • 市場規模與成長
  • 地區的市場佔有率
    • 北美
    • 南美
    • 亞太地區
    • 歐洲
  • 成本分析
    • 設備投資的比較
    • OPEX的明細
    • 每1噸的成本的分析
  • 供需動態
    • 目前供給
    • 需求預測
  • 法規
  • 競爭情形

第4章 企業簡介(企業67公司的簡介)

第5章 附錄

第6章 參考文獻

The global direct lithium extraction (DLE) market represents a transformative shift in the lithium mining industry, emerging as a critical solution to bridge the gap between conventional extraction limitations and escalating global demand. As lithium consumption continues its unprecedented trajectory, fuelled by the electric vehicle revolution, renewable energy storage expansion, and the proliferation of portable electronics, DLE technologies are positioning themselves as the key enabler for sustainable lithium supply chains.

The market dynamics reveal a compelling mismatch between lithium resource distribution and current production methodologies. While brine resources constitute approximately 60% of global lithium reserves, they contribute only 35% of total production, primarily due to the constraints of conventional evaporation pond methods. This disparity highlights the substantial untapped potential that DLE technologies can unlock, particularly as the industry seeks to diversify supply sources and reduce geographical concentration risks. Traditional brine extraction through evaporation ponds faces significant operational constraints, requiring 12-24 months for processing with recovery rates of only 40-60%. These limitations, combined with specific climatic and geographical requirements, have historically made brine extraction less competitive than hard rock mining. DLE fundamentally transforms this equation by enabling rapid lithium extraction with recovery rates exceeding 80-95%, while simultaneously reducing environmental footprint and expanding the range of exploitable brine resources.

The DLE market encompasses six distinct technology classes, each addressing specific operational challenges and brine compositions. Adsorption DLE currently leads commercial deployment, particularly in Argentina and China, utilizing aluminum-based sorbents with water-based desorption processes. Ion exchange technologies demonstrate exceptional capability in processing lower-grade brines below 100 mg/L lithium concentration while producing highly concentrated eluates exceeding 2000 mg/L. This technology's ability to eliminate pre- and post-concentration requirements represents a significant operational advantage, though acid handling and material degradation concerns require ongoing monitoring.

Emerging DLE technologies including membrane separation, electrochemical extraction, and chemical precipitation remain in various development stages, from pilot demonstrations to laboratory research. These technologies promise enhanced selectivity and reduced chemical consumption, though commercial validation remains pending. Notably, the industry acknowledges that no universal DLE solution exists, as brine composition variability necessitates tailored technological approaches for optimal performance.

Despite promising fundamentals, the DLE market faces implementation challenges including technology validation, economic competitiveness with conventional methods, and the need for improved sustainability metrics. However, ongoing technological advancement, increasing commercial deployment, and growing industry expertise continue to address these challenges, positioning DLE as the cornerstone technology for meeting future lithium demand sustainably and efficiently.

"The Global Direct Lithium Extraction Market 2026-2036" provides an exhaustive analysis of the DLE industry, delivering strategic insights into the fastest-growing segment of the lithium mining sector. With the lithium mining industry projected to grow at a compound annual growth rate (CAGR) of 9.7% through 2036, the DLE segment emerges as the standout performer, forecasted to achieve an exceptional 19.6% CAGR. This remarkable growth trajectory reflects the technology's potential to unlock previously inaccessible lithium resources while addressing critical sustainability challenges facing traditional extraction methods. The report examines six distinct DLE technology classes-ion exchange, adsorption, membrane separation, electrochemical extraction, solvent extraction, and chemical precipitation-providing detailed technical assessments, commercial viability analyses, and market penetration forecasts. Each technology receives comprehensive SWOT analysis, enabling stakeholders to make informed investment decisions in this rapidly evolving landscape.

Market dynamics reveal compelling opportunities as brine resources, constituting 60% of global lithium reserves but contributing only 35% of current production, present vast untapped potential. DLE technologies fundamentally transform this equation by achieving 80-95% recovery rates compared to conventional evaporation ponds' 40-60%, while reducing processing time from 12-24 months to mere hours or days. This dramatic improvement in efficiency, combined with significantly reduced environmental footprint and enhanced ESG compliance, positions DLE as the preferred solution for next-generation lithium production.

Comprehensive cost analysis including CAPEX comparisons, OPEX breakdowns, and production cost benchmarking enables accurate financial modeling and investment planning. The report quantifies DLE's economic advantages, demonstrating how technological improvements are rapidly closing cost gaps with traditional methods while delivering superior operational metrics. The competitive landscape analysis profiles 67 key industry players, from established mining giants to innovative technology startups, examining their strategic positioning, technological approaches, and market penetration strategies. This intelligence enables stakeholders to identify potential partners, competitors, and acquisition targets in the dynamic DLE ecosystem.

Contents include:

  • Comprehensive lithium production and demand analysis (2020-2036)
  • Global DLE project distribution and capacity assessments
  • Traditional extraction method limitations and market gaps
  • DLE technology classification and comparative analysis
  • Market growth trajectories and investment opportunities
  • Technology Assessment and Analysis
    • Ion exchange technologies: resin-based systems, inorganic exchangers, hybrid approaches
    • Adsorption technologies: physical/chemical adsorption, selective materials, ion sieves
    • Membrane separation: pressure-assisted and potential-assisted processes
    • Electrochemical extraction: battery-based systems, intercalation cells, flow-through designs
    • Solvent extraction: conventional and CO2-based extraction systems
    • Chemical precipitation: overview and implementation challenges
    • Novel hybrid approaches combining multiple technologies
  • Market Dynamics and Forecasting
    • Regional market share analysis across four major geographic regions
    • Cost analysis including CAPEX/OPEX comparisons and production economics
    • Supply-demand dynamics and market balance projections
    • Regulatory landscape analysis and policy impact assessment
    • Competitive positioning and industry consolidation trends
  • Resource Analysis and Applications
    • Comprehensive brine resource classification and quality assessment
    • Clay deposits and geothermal water extraction potential
    • Resource quality matrices and extraction potential evaluation
    • Lithium applications across battery, ceramic, and industrial sectors
    • Sustainability comparisons and environmental impact assessments

The report provides comprehensive profiles of 67 leading companies driving innovation and commercial deployment in the DLE sector including Adionics, Aepnus Technology, Albemarle Corporation, alkaLi, Altillion, American Battery Materials, Anson Resources, Arcadium Lithium, Arizona Lithium, BioMettallum, Century Lithium, CleanTech Lithium, Conductive Energy, Controlled Thermal Resources, Cornish Lithium, E3 Lithium Ltd, Ekosolve, ElectraLith, Ellexco, EnergyX, Energy Sourcer Minerals, Eon Minerals, Eramet, Evove, ExSorbiton, Geo40, Geolith, Go2Lithium (G2L), International Battery Metals (IBAT), Jintai Lithium, KMX Technologies, Koch Technology Solutions (KTS), Lake Resources, Lanke Lithium, Lifthium Energy, Lihytech, Lilac Solutions, Lithios, LithiumBank Resources and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Lithium production and demand
      • 1.1.1.1. DLE Projects
      • 1.1.1.2. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
      • 1.1.1.3. Lithium Production Forecast 2025-2035
  • 1.2. Issues with traditional extraction methods
  • 1.3. DLE Methods
    • 1.3.1. Technology Merits, Demerits, and Costs
      • 1.3.1.1. Ion Exchange Technologies
      • 1.3.1.2. Adsorption Technologies
      • 1.3.1.3. Membrane Technologies
      • 1.3.1.4. Electrochemical Technologies
  • 1.4. The Direct Lithium Extraction Market
    • 1.4.1. Growth trajectory for The Direct Lithium Extraction market
    • 1.4.2. Market forecast to 2036
    • 1.4.3. DLE Production Forecast by Country (ktpa LCE)
    • 1.4.4. DLE Market Size by Technology Type (2024-2036)
    • 1.4.5. Key market segments
    • 1.4.6. Short-term outlook (2024-2026)
    • 1.4.7. Medium-term forecasts (2026-2030)
    • 1.4.8. Long-term predictions (2030-2035)
  • 1.5. Market Drivers
    • 1.5.1. Electric Vehicle Growth
    • 1.5.2. Energy Storage Demand
    • 1.5.3. Government Policies
    • 1.5.4. Technological Advancements
      • 1.5.4.1. Process improvements
      • 1.5.4.2. Efficiency gains
      • 1.5.4.3. Cost reduction
    • 1.5.5. Sustainability Goals
    • 1.5.6. Supply Security
  • 1.6. Market Challenges
    • 1.6.1. Technical Barriers
    • 1.6.2. Economic Viability
    • 1.6.3. Scale-up Issues
    • 1.6.4. Resource Availability
    • 1.6.5. Regulatory Hurdles
    • 1.6.6. Competition
      • 1.6.6.1. Traditional methods
      • 1.6.6.2. Alternative technologies
  • 1.7. Commercial activity
    • 1.7.1. Market map
    • 1.7.2. Global lithium extraction projects
    • 1.7.3. DLE Projects
    • 1.7.4. Business models
    • 1.7.5. Investments

2. INTRODUCTION

  • 2.1. Applications of lithium
  • 2.2. Lithium brine deposits
  • 2.3. Definition and Working Principles
    • 2.3.1. Basic concepts and mechanisms
    • 2.3.2. Process chemistry
    • 2.3.3. Technology evolution
  • 2.4. Types of DLE Technologies
    • 2.4.1. Brine Resources
    • 2.4.2. Hard Rock Resources
      • 2.4.2.1. Spodumene Upgrading
      • 2.4.2.2. Spodumene Refining
      • 2.4.2.3. Logistics
    • 2.4.3. Sediment-hosted deposits
    • 2.4.4. Ion Exchange
      • 2.4.4.1. Resin-based systems
      • 2.4.4.2. Inorganic ion exchangers
      • 2.4.4.3. Hybrid systems
      • 2.4.4.4. Companies
      • 2.4.4.5. SWOT analysis
    • 2.4.5. Adsorption
      • 2.4.5.1. Adsorption vs ion exchange
      • 2.4.5.2. Physical adsorption
      • 2.4.5.3. Chemical adsorption
      • 2.4.5.4. Selective materials
        • 2.4.5.4.1. Ion sieves
        • 2.4.5.4.2. Sorbent Composites
      • 2.4.5.5. Companies
      • 2.4.5.6. SWOT analysis
    • 2.4.6. Membrane Separation
      • 2.4.6.1. Pressure-assisted
        • 2.4.6.1.1. Reverse osmosis (RO)
        • 2.4.6.1.2. Membrane fouling
        • 2.4.6.1.3. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF)
      • 2.4.6.2. Potential-assisted
        • 2.4.6.2.1. Electrodialysis
        • 2.4.6.2.2. Bipolar
        • 2.4.6.2.3. Capacitive deionization (CDI)
        • 2.4.6.2.4. Membrane distillation (MD)
      • 2.4.6.3. Companies
      • 2.4.6.4. SWOT analysis
    • 2.4.7. Solvent Extraction
      • 2.4.7.1. Overview
        • 2.4.7.1.1. CO2-based extraction systems
      • 2.4.7.2. Companies
      • 2.4.7.3. SWOT analysis
    • 2.4.8. Electrochemical extraction
      • 2.4.8.1. Overview
      • 2.4.8.2. Cost Analysis and Comparison
      • 2.4.8.3. Advantages of Electrochemical Extraction
      • 2.4.8.4. Battery-based
      • 2.4.8.5. Intercalation Cells
      • 2.4.8.6. Hybrid Capacitive
      • 2.4.8.7. Modified Electrodes
      • 2.4.8.8. Flow-through Systems
      • 2.4.8.9. Companies
      • 2.4.8.10. SWOT analysis
    • 2.4.9. Chemical precipitation
      • 2.4.9.1. Overview
      • 2.4.9.2. SWOT analysis
    • 2.4.10. Novel hybrid approaches
  • 2.5. Advantages Over Traditional Extraction
    • 2.5.1. Recovery rates
    • 2.5.2. Environmental impact
    • 2.5.3. Processing time
    • 2.5.4. Product purity
  • 2.6. Comparison of DLE Technologies
  • 2.7. Prices
  • 2.8. Environmental Impact and Sustainability
  • 2.9. Energy Requirements
  • 2.10. Water Usage
  • 2.11. Recovery Rates
    • 2.11.1. By technology type
    • 2.11.2. By resource type
    • 2.11.3. Optimization potential
  • 2.12. Scalability
  • 2.13. Resource Analysis
    • 2.13.1. Brine Resources
    • 2.13.2. Clay Deposits
    • 2.13.3. Geothermal Waters
    • 2.13.4. Resource Quality Assessment
    • 2.13.5. Extraction Potential

3. GLOBAL MARKET ANALYSIS

  • 3.1. Market Size and Growth
  • 3.2. Regional Market Share
    • 3.2.1. North America
    • 3.2.2. South America
    • 3.2.3. Asia Pacific
    • 3.2.4. Europe
  • 3.3. Cost Analysis
    • 3.3.1. CAPEX comparison
    • 3.3.2. OPEX breakdown
    • 3.3.3. Cost Per Ton Analysis
  • 3.4. Supply-Demand Dynamics
    • 3.4.1. Current supply
    • 3.4.2. Demand projections
  • 3.5. Regulations
  • 3.6. Competitive Landscape

4. COMPANY PROFILES (67 company profiles)

5. APPENDICES

  • 5.1. Glossary of Terms
  • 5.2. List of Abbreviations
  • 5.3. Research Methodology

6. REFERENCES

List of Tables

  • Table 1. Lithium sources and extraction methods
  • Table 2. Global Lithium Production 2023, by country
  • Table 3. Factors Affecting Lithium Production Outlook
  • Table 4. Worldwide Distribution of DLE Projects
  • Table 5. Announced vs Assumed DLE Outlook
  • Table 6. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
  • Table 7. Lithium Production Forecast 2025-2035
  • Table 8. Li Production Contribution by Resource Type (%)
  • Table 9. Li Production Contribution from Brine Extraction (ktpa LCE)
  • Table 10. Lithium Supply vs Demand Outlook 2023-2035 (ktpa LCE)
  • Table 11. Comparison of lithium extraction methods
  • Table 12. DLE Technologies Comparison
  • Table 13. Global DLE Market Size 2020-2024
  • Table 14. DLE Market Growth Projections 2024-2036
  • Table 15. DLE Production Forecast by Country (ktpa LCE)
  • Table 16. DLE Market Size by Technology Type (2024-2036)
  • Table 17. DLE forecast segmented by brine type
  • Table 18. Direct Lithium Extraction Key Market Segments
  • Table 19. Market Drivers for DLE
  • Table 20. Market Challenges in Direct Lithium Extraction
  • Table 21. Alternative Technologies Comparison
  • Table 22. Global lithium extraction projects
  • Table 23. Current and Planned DLE Projects
  • Table 24. Traditional Brine Operations
  • Table 25. Hard Rock Operations
  • Table 26. Conversion Plants
  • Table 27. Business Models by DLE Player Activity
  • Table 28. Business Models by Li Recovery Process
  • Table 29. DLE Investments
  • Table 30. Lithium applications
  • Table 31. Types of lithium brine deposits
  • Table 32. Existing and emerging methods for lithium mining & extraction
  • Table 33. Technology Evolution Timeline and Characteristics
  • Table 34. Types of DLE Technologies
  • Table 35. Brine Evaporation vs Brine DLE Comparison
  • Table 36. Commercial Hard Rock (Spodumene) Projects
  • Table 37. Companies in Sedimentary Lithium Processing
  • Table 38. Ion exchange processes for lithium extraction
  • Table 39. Ion Exchange DLE Projects and Companies
  • Table 40. Companies in ion exchange DLE
  • Table 41. Adsorption vs Absorption
  • Table 42. Adsorption Processes for Lithium Extraction
  • Table 43. Adsorption vs ion exchange
  • Table 44. Types of Sorbent Materials
  • Table 45. Commercial brine evaporation projects
  • Table 46. Comparison of Al/Mn/Ti-based Sorbents
  • Table 47. Adsorption DLE Projects
  • Table 48. Companies in adsorption DLE
  • Table 49. Membrane processes for lithium recovery
  • Table 50. Membrane Materials
  • Table 51. Membrane Filtration Comparison
  • Table 52. Potential-assisted Membrane Technologies
  • Table 53. Companies in membrane technologies for DLE
  • Table 54. Membrane technology developers by Li recovery process
  • Table 55. Solvent extraction processes for lithium extraction
  • Table 56. Companies in solvent extraction DLE
  • Table 57. Electrochemical technologies for lithium recovery
  • Table 58. Companies in electrochemical extraction DLE
  • Table 59. Chemical Precipitation Agents
  • Table 60. Novel Hybrid DLE Approaches
  • Table 61. Cost Comparison: DLE vs Traditional Methods
  • Table 62. Recovery Rate Comparison
  • Table 63. Environmental Impact Comparison
  • Table 64. Processing Time Comparison
  • Table 65. Product Purity Comparison
  • Table 66. Comparison of DLE Technologies
  • Table 67. Lithium Prices 2019-2024 (Battery Grade Li2CO3)
  • Table 68. Energy Consumption Comparison
  • Table 69. Water Usage by Technology Type
  • Table 70. Recovery Rates Comparison
  • Table 71. Recovery Rates By Technology Type
  • Table 72. Recovery Rates By Resource Type
  • Table 73. Global Lithium Resource Distribution,
  • Table 74. Quality Parameters
  • Table 75. Brine Chemistry Comparison
  • Table 76. Resource Quality Matrix
  • Table 77. Extraction Potential by Resource Type
  • Table 78. Global DLE Market Size by Region
  • Table 79. CAPEX Breakdown by Technology
  • Table 80. Cost Comparisons Between Lithium Projects
  • Table 81. OPEX Breakdown Table (USD/tonne LCE)
  • Table 82. Production Cost Comparison (USD/tonne LCE)
  • Table 83. Sustainability Comparisons
  • Table 84. Regulations and incentives related to lithium extraction and mining
  • Table 85. DLE Patent Filing Trends 2015-2024
  • Table 86. Glossary of Terms
  • Table 87. List of Abbreviations

List of Figures

  • Figure 1. Schematic of a conventional lithium extraction process with evaporation ponds
  • Figure 2. Schematic for a direct lithium extraction (DLE) process.
  • Figure 3. Global DLE Market Size 2020-2024
  • Figure 4. DLE Market Growth Projections 2024-2036
  • Figure 5. Market map of DLE technology developers
  • Figure 6. Direct Lithium Extraction Process
  • Figure 7. Direct lithium extraction (DLE) technologies
  • Figure 8. Ion Exchange Process Flow Diagram
  • Figure 9. SWOT analysis for ion exchange technologies
  • Figure 10. SWOT analysis for adsorption DLE
  • Figure 11. Membrane Separation Schematic
  • Figure 12. SWOT analysis for membrane DLE
  • Figure 13. SWOT analysis for solvent extraction DLE
  • Figure 14. SWOT analysis for electrochemical extraction DLE
  • Figure 15. SWOT analysis for chemical precipitation
  • Figure 16. Conventional vs. DLE processes
  • Figure 17. Global DLE Market Size by Region
  • Figure 18. Competitive Position Matrix
  • Figure 19. Flionex-R process
  • Figure 20. Volt Lithium Process