全球中性原子量子計算市場(2026-2036)
市場調查報告書
商品編碼
1734002

全球中性原子量子計算市場(2026-2036)

The Global Neutral-Atom Quantum Computing Market 2026-2036

出版日期: | 出版商: Future Markets, Inc. | 英文 243 Pages, 120 Tables, 18 Figures | 訂單完成後即時交付

價格

中性原子量子計算是量子運算產業中最具前景且發展最快的領域之一。此技術利用單一中性原子,通常是鹼金屬,例如銣、銫和鍶。這些原子透過稱為光鑷的精確聚焦雷射光束進行捕獲和操控。與被捕獲的離子不同,中性原子不帶電荷,因此可以靈活地建立二維和三維陣列,同時最大限度地減少量子位元之間的串擾。

中性原子系統的根本吸引力在於其固有的可擴展性和操作優勢。這些平台具有較長的相干時間,能夠實現持續的量子運算並提高糾錯能力。該技術受益於成熟的原子物理學原理,並且無需超導量子位元系統所需的低溫冷卻,從而降低了能耗和基礎設施的複雜性。 目前運行的系統採用 100 至 300 個原子陣列,領先公司正在迅速擴展到數千甚至數萬個量子位元。

競爭格局的特點是幾家資金雄厚的公司採取了策略性佈局。總部位於美國的 QuEra Computing 獲得了Google的巨額投資,這表明其中性原子平台是實現可擴展量子運算的可行途徑。此次合作將 QuEra 的硬體專長與Google的量子軟體資源雲端基礎設施結合。 Atom Computing 也與微軟合作,將其採用穩定核自旋量子位元陣列的 Phoenix 系統整合到 Azure 量子雲端平台。法國領先的量子計算公司 Pasqal 在 2024 年實現了 1000 個量子位元的重大里程碑,並宣布了雄心勃勃的計劃,目標是在 2026 年將量子位元數量擴展到 10000 個。其他主要公司包括德國的 Planqc、香港的 QUANTier 和斯洛維尼亞的 Atom Quantum Labs,它們各自開發了不同的中性原子架構方案。

此技術路線圖預測,到 2035 年將快速擴展。目前的系統(2025-2026 年)使用 1000-10000 個原子,單量子位元保真度約為 99.9%,雙量子位元保真度約為 99.7%。在 2027-2028 年,目標是 10000-100000 個原子的系統將實現 99.99% 的單量子位元保真度並具備糾錯能力。 預計在 2029-2030 年實現使用超過 10 萬個原子的容錯邏輯量子位元操作,並在 2032-2035 年實現完全容錯的百萬原子系統和工業部署。

主要應用領域涵蓋量子模擬、最佳化問題、量子化學和機器學習任務。該技術在模擬複雜物理系統、凝聚態物質研究和分子結構分析方面表現優異。製藥、化學和金融服務業是尋求中性原子解決方案的關鍵市場領域。

仍存在一些挑戰,包括延長相干時間、提高閘速度(目前的模擬週期限制在約 1 Hz)、解決計算過程中原子損失問題,以及開發糾錯和容錯量子計算所需的量子非破壞性測量技術。 儘管面臨這些挑戰,中性原子量子運算憑藉其室溫運作、天然可擴展性和靈活性,正逐漸成為超導平台的有力競爭對手,預計在2026年至2036年間將實現顯著的商業成長。

本報告探討並分析了全球中性原子量子運算市場,按技術類別、應用、客戶類型和地區提供了市場規模估算和未來十年(2026-2036年)的預測。

目錄

第一章:摘要整理

  • 市場概覽及主要發現
  • 技術成熟度及商業可行性
  • 市場預測
  • 市場參與者
  • 產品及系統對比

第二章:中性原子技術及產品

  • 技術演進
  • 中性原子組件
  • 中性原子相關軟體
  • 技術成熟度

第三章:市場及應用

  • 應用
  • 生態系統
  • 中性原子計算機供應鏈
  • 國家投資與政策
  • 市場區隔市場

第四章 中性原子技術

  • 中性原子計算機
  • 中性原子組件和子系統
  • 軟體
  • 平台

第五章:市場規模與成長(2026-2036)

  • 全球市場規模預測(2026-2036)
  • 按細分市場劃分的收入預測
  • 地理市場分佈
  • 市場滲透率情景
  • 成長驅動因素與限制因素
  • 全球裝機量分析

第六章:技術發展路線圖

  • 硬體擴充和糾錯
  • 軟體堆疊演進
  • 與傳統計算機的整合計算
  • 製造改進

第七章 投資與融資

  • 創投與私人投資
  • 政府資助與國家舉措
  • 企業研發投資趨勢

第八章:挑戰與危險因子

  • 技術障礙與發展風險
  • 市場推廣障礙
  • 來自替代技術的競爭威脅
  • 監理與安全考量

第九章:未來市場機會

  • 新的應用領域
  • 科技融合機遇
  • 評估顛覆性潛力

第十章:公司簡介(31家公司)

第十一章:研究方法

第十二章:參考文獻

Neutral-atom quantum computing represents one of the most promising and rapidly advancing segments of the quantum computing industry. This technology leverages individual neutral atoms-typically alkali metals like rubidium, cesium, or strontium-trapped and manipulated using precisely focused laser beams called optical tweezers. Unlike trapped ions, neutral atoms are not electrically charged, allowing them to be arranged in flexible two-dimensional and three-dimensional arrays with minimal crosstalk between qubits.

The fundamental appeal of neutral-atom systems lies in their inherent scalability and operational advantages. These platforms demonstrate long coherence times, enabling sustained quantum operations and increased error correction possibilities. The technology benefits from well-understood atomic physics principles and eliminates the need for the extreme cryogenic cooling required by superconducting qubit systems, resulting in lower energy consumption and reduced infrastructure complexity. Current operational systems feature 100-300 atom arrays, with leading companies rapidly scaling toward thousands and tens of thousands of qubits.

The competitive landscape features several well-funded players establishing strategic positions. QuEra Computing, based in the United States, has secured significant investment from Google, validating neutral-atom platforms as viable paths to scalable quantum computing. This partnership combines QuEra's hardware expertise with Google's quantum software resources and cloud infrastructure. Atom Computing has forged a parallel partnership with Microsoft, integrating its Phoenix system-featuring stable nuclear-spin qubit arrays-with Azure Quantum's cloud platform. Pasqal, the French leader in this space, achieved a significant milestone by reaching 1,000 qubits in 2024 and has announced ambitious plans to scale to 10,000 qubits by 2026. Additional players include Planqc in Germany, QUANTier in Hong Kong, and Atom Quantum Labs in Slovenia, each developing distinctive approaches to neutral-atom architectures.

The technology roadmap projects aggressive scaling through 2035. Current systems (2025-2026) operate with 1,000-10,000 atoms achieving single-qubit fidelities around 99.9% and two-qubit fidelities of 99.7%. By 2027-2028, systems targeting 10,000-100,000 atoms aim for 99.99% single-qubit fidelity with error correction capabilities. The 2029-2030 horizon envisions 100,000+ atoms with fault-tolerant logical qubit operations, progressing toward million-atom systems with full fault tolerance and industrial deployment by 2032-2035.

Primary applications span quantum simulations, optimization problems, quantum chemistry, and machine learning tasks. The technology excels particularly in simulating complex physical systems, condensed matter research, and molecular structure analysis. The pharmaceutical, chemical, and financial services industries represent key market verticals pursuing neutral-atom solutions.

Challenges remain, including achieving longer coherence times, improving gate speeds (currently limited to approximately 1 Hz simulation cycles), addressing atom loss during computation, and developing quantum non-demolition measurement capabilities required for error correction and fault-tolerant quantum computing. Despite these hurdles, neutral-atom quantum computing has emerged as a serious competitor to superconducting platforms, with its room-temperature operation, natural scalability, and flexibility positioning it for significant commercial growth through the 2026-2036 forecast period.

This report provides complete market sizing and ten-year forecasts from 2026 through 2036, segmented by technology category, application domain, customer type, and geographic region. Strategic analysis covers competitive positioning, investment trends, technology readiness assessments, and detailed company profiles of 32 organizations shaping the neutral-atom ecosystem.

Report Contents Include:

  • Key findings, technology readiness assessments, and commercial viability analysis
  • Current system specifications, pricing models, and company roadmap comparisons
  • Technology Readiness Level (TRL) benchmarking across quantum computing platforms
  • Technology Deep Dive
    • Atomic species selection, control hardware, and readout component analysis
    • Photonic systems, cryostat requirements, and comparative cooling analysis
    • Software stack architecture, programming frameworks, and development tools
    • Total cost of ownership analysis and component cost breakdowns
    • Performance benchmarks and scalability projections
  • Markets and Applications
    • Distributed quantum computing and data center integration strategies
    • Application domains including optimization, simulation, machine learning, and cryptography
    • Market segmentation across enterprise, cloud providers, government/defense, and academia
    • Supply chain analysis comparing cryogenic versus room-temperature systems
    • National investment initiatives and policy frameworks by region
  • Market Size and Growth Forecasts
    • Global market sizing 2026-2036 with revenue projections by segment
    • Geographic market distribution and regional growth analysis
    • Market penetration scenarios (conservative, base, optimistic)
    • Global installation forecasts and deployment projections
    • Growth drivers, constraints, and risk factor assessment
  • Technology Development Roadmap
    • Hardware scaling trajectory and qubit count projections
    • Error correction progress and fault-tolerance timelines
    • Software evolution and classical computing integration
    • Manufacturing improvements and production scaling analysis
  • Investment and Funding Analysis
    • Venture capital activity and private investment trends
    • Government funding and national quantum initiatives
    • Corporate R&D investment patterns and strategic partnerships
  • Challenges, Risks, and Future Opportunities
    • Technical hurdles and development risk assessment
    • Market adoption barriers and competitive threats
    • Regulatory and security considerations
    • Emerging application areas and technology convergence opportunities
    • Disruptive potential assessment

This report features comprehensive profiles of 32 companies across the neutral-atom quantum computing value chain including AMD (Advanced Micro Devices), Atom Computing, Atom Quantum Labs, CAS Cold Atom, data cybernetics ssc GmbH, GDQLABS, Hamamatsu, Infleqtion, Lake Shore Cryotronics, M-Labs, Menlo Systems GmbH, Microsoft Corporation (Azure Quantum), Nanofiber Quantum Technologies, Nexus Photonics and more.....

Table of Contents

1 EXECUTIVE SUMMARY

  • 1.1 Market Overview and Key Findings
  • 1.2 Technology Readiness and Commercial Viability
  • 1.3 Market Forecasts
  • 1.4 Market Players
  • 1.5 Product and System Comparison
    • 1.5.1 Current Systems
    • 1.5.2 System Pricing and Access Models
    • 1.5.3 Roadmap Comparison

2 NEUTRAL ATOM TECHNOLOGY AND PRODUCTS

  • 2.1 Technology Evolution
    • 2.1.1 Atoms Species Used
    • 2.1.2 Accessibility
    • 2.1.3 Research to commercially viable quantum systems
  • 2.2 Neutral Atom Components
    • 2.2.1 Atomic Control Hardware and Readout Components
    • 2.2.2 Photonic and Photographic Components
    • 2.2.3 Cryostats
      • 2.2.3.1 Cryogenic Requirements and Comparison
    • 2.2.4 Costs
    • 2.2.5 Total Cost of Ownership Analysis
  • 2.3 Neutral Atom-related Software
    • 2.3.1 Software Stack Components and Functions
    • 2.3.2 Programming Languages and Frameworks Used
  • 2.4 Technology Readiness
    • 2.4.1 Technical Limitations and Challenges
    • 2.4.2 Advantages Over Competing Quantum Technologies
    • 2.4.3 Infrastructure and Operational Advantages
    • 2.4.4 Performance Benchmarks and Scalability

3 MARKETS AND APPLICATIONS

  • 3.1 Applications
    • 3.1.1 Distributed Quantum Computing on Neutral Atom Computers
    • 3.1.2 Neutral Atom Computers in the Data Center
    • 3.1.3 Other Applications for Neutral Atom Computers
  • 3.2 Ecosystems
    • 3.2.1 Market Control Dynamics
    • 3.2.2 Ecosystem Development
  • 3.3 Supply Chain for Neutral Atom Computers
    • 3.3.1 Manufacturing and Supply Chain
    • 3.3.2 Component Sourcing and Dependencies
    • 3.3.3 Comparative Supply Chain Analysis: Cryogenic vs. Room Temperature Systems
  • 3.4 National Investment and Policy Initiatives
  • 3.5 Market Segmentation
    • 3.5.1 Enterprise
    • 3.5.2 Cloud Service Providers
    • 3.5.3 Government and Defence
    • 3.5.4 Academia and Research

4 NEUTRAL ATOM TECHNOLOGIES

  • 4.1 Neutral-Atom Computers
    • 4.1.1 Overview
    • 4.1.2 Companies
  • 4.2 Neutral Atom Components and Subsystems
    • 4.2.1 Overview
    • 4.2.2 Component Market Value Chain
    • 4.2.3 Companies
  • 4.3 Software
    • 4.3.1 Overview
    • 4.3.2 Software Platform Comparison
    • 4.3.3 Software Stack Architecture
    • 4.3.4 Development Tools and Frameworks
    • 4.3.5 Open Source vs. Proprietary Solutions
    • 4.3.6 Companies
    • 4.3.7 Development Tools and Frameworks
    • 4.3.8 Open Source vs. Proprietary Solutions
  • 4.4 Platforms
    • 4.4.1 Cloud Platform
    • 4.4.2 Platform Features and Capabilities
    • 4.4.3 Companies and Centres

5 MARKET SIZE AND GROWTH (2026-2036)

  • 5.1 Global Market Size Forecast 2026-2036
  • 5.2 Revenue Forecasts by Segment
  • 5.3 Geographic Market Distribution
  • 5.4 Market Penetration Scenarios
  • 5.5 Growth Drivers and Constraints
  • 5.6 Global Installations Analysis

6 TECHNOLOGY DEVELOPMENT ROADMAP

  • 6.1 Hardware Scaling and Error Correction
    • 6.1.1 Qubit Scaling Trajectory
    • 6.1.2 Error Correction Progress
  • 6.2 Software Stack Evolution
  • 6.3 Integration with Classical Computing
  • 6.4 Manufacturing Improvements
    • 6.4.1 Manufacturing Scaling: Neutral Atom vs. Cryogenic Platforms

7 INVESTMENT AND FUNDING

  • 7.1 Venture Capital and Private Investment
  • 7.2 Government Funding and National Initiatives
  • 7.3 Corporate R&D Investment Trends

8 CHALLENGES AND RISK FACTORS

  • 8.1 Technical Hurdles and Development Risks
  • 8.2 Market Adoption Barriers
  • 8.3 Competitive Threats from Alternative Technologies
  • 8.4 Regulatory and Security Considerations

9 FUTURE MARKET OPPORTUNITIES

  • 9.1 Emerging Application Areas
  • 9.2 Technology Convergence Opportunities
  • 9.3 Disruptive Potential Assessment

10 COMPANY PROFILES (31 company profiles)

11 RESEARCH METHODOLOGY

  • 11.1 Report Scope and Objectives
  • 11.2 Research Methodology and Data Sources
  • 11.3 Market Definition and Segmentation

12 REFERENCES

List of Tables

  • Table 1. Initialization, manipulation and readout for neutral-atom quantum computers.
  • Table 2. Pros and cons of cold atoms quantum computers and simulators
  • Table 3. Technology Readiness Level Definitions and Quantum Computing Criteria.
  • Table 4. TRL Assessment by Quantum Computing Platform (2025).
  • Table 5. TRL Comparison Across Key Dimensions.
  • Table 6. TRL by Subsystem - Neutral Atom Detailed Assessment.
  • Table 7. TRL Comparison by Application Domain.
  • Table 8. Key TRL Advancement Drivers by Platform.
  • Table 9. Global Market Size Forecast 2026-2036
  • Table 10. Main neural atom qubit market players.
  • Table 11. Current Neutral Atom System Specifications
  • Table 12. Neutral Atom System Pricing and Access
  • Table 13. Company Roadmap Comparison
  • Table 14. Atomic Species Used in Neutral Atom Systems.
  • Table 15. Accessibility Metrics Comparison.
  • Table 16. Key Hardware Components and Specifications
  • Table 17. Initialization, Manipulation, and Readout Methods
  • Table 18. Photonic and Imaging Component Specifications:
  • Table 19. Cryostat Requirements and Specifications.
  • Table 20. Cryostat Requirements and Specifications Comparison.
  • Table 21. Multi-Stage Temperature Environment in Superconducting Systems.
  • Table 22. Component Cost Breakdown Analysis.
  • Table 23. Cost Comparison with Other Quantum Technologies:
  • Table 24. Total Cost of Ownership Comparison (5-Year, 1000-Qubit System).
  • Table 25. Infrastructure Scaling Cost Projections.
  • Table 26. Software Stack Components and Functions.
  • Table 27. Programming Languages and Frameworks Used.
  • Table 28. Technical Challenges and Mitigation Strategies.
  • Table 29. Performance Comparison with Other Quantum Technologies.
  • Table 30. Infrastructure Advantage Comparison.
  • Table 31. Current System Achievements (2024-2025)
  • Table 32. Neutral Atom Hardware Development Roadmap
  • Table 33. Distributed Computing Use Cases and Requirements.
  • Table 34. Key Technical Requirements for Distributed Neutral Atom Computing.
  • Table 35. Emerging Application Areas and Market Potential.
  • Table 36. Application Adoption Timeline Factors.
  • Table 37. Key Ecosystem Partnerships and Alliances
  • Table 38. Ecosystem Value Chain Analysis
  • Table 39. Supply Chain Structure and Key Participants
  • Table 40. Supply Chain Risk Assessment.
  • Table 41. Critical Component Dependencies and Risk Mitigation.
  • Table 42. Supply Chain Comparison by Platform.
  • Table 43. Cryogenic Component Supplier Landscape.
  • Table 44. National Investment and Policy Initiatives.
  • Table 45. Enterprise Adoption Drivers and Barriers.
  • Table 46. Enterprise Engagement Models.
  • Table 47. Cloud Platform Neutral Atom Integration
  • Table 48. Government and Defense Market Characteristics
  • Table 49. Academic and Research Market Structure
  • Table 50. Academic Research Priorities for Neutral Atom Computing
  • Table 51. Neutral Atom Computer Companies.
  • Table 52. Component Market Value Chain.
  • Table 53. Value Distribution in Neutral Atom Systems.
  • Table 54. Neutral Atom Components and Subsystems Companies.
  • Table 55. Component Market Value Chain
  • Table 56. Software Platform Comparison.
  • Table 57. Platform Ecosystem Integration.
  • Table 58. Development Tools and Frameworks.
  • Table 59. Software Market Revenue Projections
  • Table 60. Open Source vs. Proprietary Solutions.
  • Table 61. Hybrid Deployment Models.
  • Table 62. Software companies.
  • Table 63. Software Platform Comparison
  • Table 64. Platform Ecosystem Integration.
  • Table 65. Development Tools and Frameworks
  • Table 66. Open Source vs. Proprietary Solutions
  • Table 67. Platform Features and Capabilities.
  • Table 68. Platform Companies and Centres.
  • Table 69. User Adoption and Growth Metrics
  • Table 70. Pricing Models and Cost Analysis
  • Table 71. Cost Comparison Example (1,000 Circuit Executions).
  • Table 72. Global Market Size Forecast 2026-2036
  • Table 73. Market Size by Category Detail.
  • Table 74. Market Position Relative to Total Quantum Computing (Billions USD).
  • Table 75. Revenue Forecasts by Application Segment (Billions USD).
  • Table 76. Revenue by Customer Segment (Billions USD).
  • Table 77. Regional Market Growth Projections (Billions USD).
  • Table 78. Regional Market Dynamics.
  • Table 79. Regional Installation Forecast (Units).
  • Table 80. Regional Installation Forecast (Units) by Customer Type.
  • Table 81. Market Penetration Scenarios (Conservative, Base, Optimistic)
  • Table 82. Market Size Range by Year ($ Billions).
  • Table 83. Growth Drivers Impact Analysis
  • Table 84. Market Constraints and Risk Factors
  • Table 85. Global Neutral Atom Quantum Computer Installations Forecast
  • Table 86. Key Installation Locations (Current and Announced).
  • Table 87. Hardware Scaling Milestones.
  • Table 88. Scaling Pathway by Company.
  • Table 89. Key Scaling Technologies.
  • Table 90. Error Correction Progress Projections.
  • Table 91. Error Correction Codes for Neutral Atoms.
  • Table 92. Gate Fidelity Trajectory.
  • Table 93. Logical Qubit Demonstrations Timeline.
  • Table 94. Software Evolution Roadmap.
  • Table 95. Software Development Priorities by Phase.
  • Table 96. Manufacturing Cost Reduction Curve
  • Table 97. Integration Roadmap:
  • Table 98. Key Manufacturing Domains.
  • Table 99. Technology Development Timeline.
  • Table 100. Manufacturing Complexity Comparison.
  • Table 101. Production Volume Projections by Platform.
  • Table 102. Venture Capital and Private Investment.
  • Table 103. Quantum Technology Funding by Company (2022-2025, Millions USD).
  • Table 104. Government Funding and National Initiatives.
  • Table 105. Regional Government Investment Comparison (2023-2025, USD Billions).
  • Table 106. Investment Trends 2020-2025 and Projections to 2036.
  • Table 107. Corporate R&D Investment by Major Technology Companies.
  • Table 108. Corporate Venture Investment in Neutral Atom.
  • Table 109. Investment Projections 2026-2036 (USD Millions).
  • Table 110. Investment by Technology Platform (Historical and Projected).
  • Table 111. End-User Industry Investment in Quantum Readiness.
  • Table 112. Key Investment Drivers and Trends.
  • Table 113. Risk Assessment Matrix.
  • Table 114. Market Adoption Barriers.
  • Table 115. Adoption Barrier Impact by Customer Segment.
  • Table 116. Competitive Threats from Alternative Technologies.
  • Table 117. Regulatory Framework Comparison by Region
  • Table 118. Emerging Application Market Potential.
  • Table 119. Technology Convergence Opportunities.
  • Table 120. Emerging Application Market Potential

List of Figures

  • Figure 1. Neutral atoms (green dots) arranged in various configurations
  • Figure 2. Neutral Atom Hardware Roadmap.
  • Figure 3.Global Neutral Atom Quantum Computing Market Size 2026-2036.
  • Figure 4. Timeline of Neutral Atom Technology Development
  • Figure 5. Neutral Atom System Architecture Diagram.
  • Figure 6. Technology Readiness Level Assessment.
  • Figure 7. Scalability Projections 2026-2036.
  • Figure 8. Data Center Integration Architecture.
  • Figure 9. Application Adoption Timeline.
  • Figure 10. Market Control and Influence Mapping.
  • Figure 11. Manufacturing Process Flow.
  • Figure 12. Cloud Provider Integration Timeline.
  • Figure 13. Vision for a repeater-enabled long-distance network between neutral atom quantum processing units (QPUs).
  • Figure 14. Revenue Forecasts by Application Segment (Billions USD).
  • Figure 15. Revenue by Customer Segment (Billions USD).
  • Figure 16. Regional Market Growth Projections (Billions USD).
  • Figure 17. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).
  • Figure 18. Pasqal's neutral-atom quantum computer