![]() |
市場調查報告書
商品編碼
1734002
全球中性原子量子計算市場(2026-2036)The Global Neutral-Atom Quantum Computing Market 2026-2036 |
||||||
中性原子量子計算是量子運算產業中最具前景且發展最快的領域之一。此技術利用單一中性原子,通常是鹼金屬,例如銣、銫和鍶。這些原子透過稱為光鑷的精確聚焦雷射光束進行捕獲和操控。與被捕獲的離子不同,中性原子不帶電荷,因此可以靈活地建立二維和三維陣列,同時最大限度地減少量子位元之間的串擾。
中性原子系統的根本吸引力在於其固有的可擴展性和操作優勢。這些平台具有較長的相干時間,能夠實現持續的量子運算並提高糾錯能力。該技術受益於成熟的原子物理學原理,並且無需超導量子位元系統所需的低溫冷卻,從而降低了能耗和基礎設施的複雜性。 目前運行的系統採用 100 至 300 個原子陣列,領先公司正在迅速擴展到數千甚至數萬個量子位元。
競爭格局的特點是幾家資金雄厚的公司採取了策略性佈局。總部位於美國的 QuEra Computing 獲得了Google的巨額投資,這表明其中性原子平台是實現可擴展量子運算的可行途徑。此次合作將 QuEra 的硬體專長與Google的量子軟體資源雲端基礎設施結合。 Atom Computing 也與微軟合作,將其採用穩定核自旋量子位元陣列的 Phoenix 系統整合到 Azure 量子雲端平台。法國領先的量子計算公司 Pasqal 在 2024 年實現了 1000 個量子位元的重大里程碑,並宣布了雄心勃勃的計劃,目標是在 2026 年將量子位元數量擴展到 10000 個。其他主要公司包括德國的 Planqc、香港的 QUANTier 和斯洛維尼亞的 Atom Quantum Labs,它們各自開發了不同的中性原子架構方案。
此技術路線圖預測,到 2035 年將快速擴展。目前的系統(2025-2026 年)使用 1000-10000 個原子,單量子位元保真度約為 99.9%,雙量子位元保真度約為 99.7%。在 2027-2028 年,目標是 10000-100000 個原子的系統將實現 99.99% 的單量子位元保真度並具備糾錯能力。 預計在 2029-2030 年實現使用超過 10 萬個原子的容錯邏輯量子位元操作,並在 2032-2035 年實現完全容錯的百萬原子系統和工業部署。
主要應用領域涵蓋量子模擬、最佳化問題、量子化學和機器學習任務。該技術在模擬複雜物理系統、凝聚態物質研究和分子結構分析方面表現優異。製藥、化學和金融服務業是尋求中性原子解決方案的關鍵市場領域。
仍存在一些挑戰,包括延長相干時間、提高閘速度(目前的模擬週期限制在約 1 Hz)、解決計算過程中原子損失問題,以及開發糾錯和容錯量子計算所需的量子非破壞性測量技術。 儘管面臨這些挑戰,中性原子量子運算憑藉其室溫運作、天然可擴展性和靈活性,正逐漸成為超導平台的有力競爭對手,預計在2026年至2036年間將實現顯著的商業成長。
本報告探討並分析了全球中性原子量子運算市場,按技術類別、應用、客戶類型和地區提供了市場規模估算和未來十年(2026-2036年)的預測。
Neutral-atom quantum computing represents one of the most promising and rapidly advancing segments of the quantum computing industry. This technology leverages individual neutral atoms-typically alkali metals like rubidium, cesium, or strontium-trapped and manipulated using precisely focused laser beams called optical tweezers. Unlike trapped ions, neutral atoms are not electrically charged, allowing them to be arranged in flexible two-dimensional and three-dimensional arrays with minimal crosstalk between qubits.
The fundamental appeal of neutral-atom systems lies in their inherent scalability and operational advantages. These platforms demonstrate long coherence times, enabling sustained quantum operations and increased error correction possibilities. The technology benefits from well-understood atomic physics principles and eliminates the need for the extreme cryogenic cooling required by superconducting qubit systems, resulting in lower energy consumption and reduced infrastructure complexity. Current operational systems feature 100-300 atom arrays, with leading companies rapidly scaling toward thousands and tens of thousands of qubits.
The competitive landscape features several well-funded players establishing strategic positions. QuEra Computing, based in the United States, has secured significant investment from Google, validating neutral-atom platforms as viable paths to scalable quantum computing. This partnership combines QuEra's hardware expertise with Google's quantum software resources and cloud infrastructure. Atom Computing has forged a parallel partnership with Microsoft, integrating its Phoenix system-featuring stable nuclear-spin qubit arrays-with Azure Quantum's cloud platform. Pasqal, the French leader in this space, achieved a significant milestone by reaching 1,000 qubits in 2024 and has announced ambitious plans to scale to 10,000 qubits by 2026. Additional players include Planqc in Germany, QUANTier in Hong Kong, and Atom Quantum Labs in Slovenia, each developing distinctive approaches to neutral-atom architectures.
The technology roadmap projects aggressive scaling through 2035. Current systems (2025-2026) operate with 1,000-10,000 atoms achieving single-qubit fidelities around 99.9% and two-qubit fidelities of 99.7%. By 2027-2028, systems targeting 10,000-100,000 atoms aim for 99.99% single-qubit fidelity with error correction capabilities. The 2029-2030 horizon envisions 100,000+ atoms with fault-tolerant logical qubit operations, progressing toward million-atom systems with full fault tolerance and industrial deployment by 2032-2035.
Primary applications span quantum simulations, optimization problems, quantum chemistry, and machine learning tasks. The technology excels particularly in simulating complex physical systems, condensed matter research, and molecular structure analysis. The pharmaceutical, chemical, and financial services industries represent key market verticals pursuing neutral-atom solutions.
Challenges remain, including achieving longer coherence times, improving gate speeds (currently limited to approximately 1 Hz simulation cycles), addressing atom loss during computation, and developing quantum non-demolition measurement capabilities required for error correction and fault-tolerant quantum computing. Despite these hurdles, neutral-atom quantum computing has emerged as a serious competitor to superconducting platforms, with its room-temperature operation, natural scalability, and flexibility positioning it for significant commercial growth through the 2026-2036 forecast period.
This report provides complete market sizing and ten-year forecasts from 2026 through 2036, segmented by technology category, application domain, customer type, and geographic region. Strategic analysis covers competitive positioning, investment trends, technology readiness assessments, and detailed company profiles of 32 organizations shaping the neutral-atom ecosystem.
This report features comprehensive profiles of 32 companies across the neutral-atom quantum computing value chain including AMD (Advanced Micro Devices), Atom Computing, Atom Quantum Labs, CAS Cold Atom, data cybernetics ssc GmbH, GDQLABS, Hamamatsu, Infleqtion, Lake Shore Cryotronics, M-Labs, Menlo Systems GmbH, Microsoft Corporation (Azure Quantum), Nanofiber Quantum Technologies, Nexus Photonics and more.....