壓電MEMS的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1650828

壓電MEMS的全球市場(2025年~2035年)

Global PiezoMEMS Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 258 Pages, 63 Tables, 29 Figures | 訂單完成後即時交付

價格

壓電微機電感測器及致動器應用廣泛。與傳統的電容式MEMS相比,壓電MEMS具有卓越的性能和製造效率。壓電薄膜,尤其是PZT(壓電陶瓷),正在構成新型高成長MEMS產品的基礎,例如麥克風和微鏡、氣體感測器、影像穩定器、超音波換能器、列印效果卓越的壓電印表機、AR眼鏡以及用於增強通訊的射頻濾波器。

壓電MEMS領域是MEMS產業中重要的細分領域,在消費性電子、通訊和新興物聯網應用領域尤其突出。

預計壓電MEMS市場的成長速度將超過更廣泛的MEMS市場,主要推動因素如下:

  • 5G網路發展與未來6G的發展
  • 汽車安全和自動駕駛系統中的應用日益普及
  • 醫療影像與診斷應用的成長
  • 新型消費性電子應用的湧現

預計新興應用(尤其是在物聯網、汽車和醫療領域)將推動市場持續成長直至2035年,並有可能在量子運算和先進感測系統等新領域實現突破性應用。

本報告分析了全球壓電MEMS市場,並對2025-2035年的技術發展、市場趨勢和成長機會提供了詳細的見解。報告重點關注新技術和市場動態,並考察了從材料、製造到最終使用的整個價值鏈。

目錄

第1章 簡介

  • 全球MEMS市場
  • 壓電技術概要
  • 壓電MEMS技術的演進
  • 壓電MEMS市場(2020年~2024年)
  • 技術形勢
  • 法規結構

第2章 壓電材料和技術

  • 壓電材料的基礎
  • 材料範疇
  • 加工技術

第3章 市場分析與預測(2025年~2035年)

  • 市場規模與成長
    • 全球收益的預測
    • 數量的預測
    • 地區的分析
  • 市場區隔
    • 不同設備類型
    • 各材料類型
    • 各最終用途產業
  • 晶圓層級的分析
    • 晶圓開始:各材料
    • 晶圓尺寸趨勢
    • 製造能力
    • 地區的生產的分佈

第4章 用途市場區隔

  • 感測器
    • 麥克風
    • 加速計
    • 應力感測器
    • 市場預測
  • 致動器
    • 噴墨印表機噴頭
    • 微型喇叭
    • 光學MEMS
    • 市場預測
  • 轉換器
    • 超音波指紋感測器
    • 醫療圖像
    • 市場預測
  • RF過濾器
    • BAW技術
    • FBAR/SMR解決方案
    • 市場預測

第5章 供應鏈

第6章 技術趨勢與革新

  • 材料的革新
  • 製造的進步
  • 設備的革新

第7章 課題與機會

  • 技術課題
  • 市場障礙
  • 成長機會
  • 未來的用途

第8章 企業簡介(企業106公司的簡介)

第9章 附錄

第10章 參考文獻

Piezoelectric microelectromechanical sensors and actuators are used in a wide variety of applications. Compared to traditional capacitive MEMS, piezoelectric MEMS deliver superior performance and manufacturing efficiency. Piezoelectric thin films, particularly PZT, form the new basis for high-growth MEMS products such as microphones and micromirrors, gas sensors, image stabilizers, ultrasonic transducers, piezo printers that deliver excellent printing results, AR glasses and RF filters for enhanced telecommunications.

The piezoMEMS sector represents a significant segment within the broader MEMS industry, with particularly strong presence in consumer electronics, telecommunications, and emerging IoT applications.

The piezoMEMS market is expected to grow significantly faster than the broader MEMS driven by:

  • Expansion of 5G networks and eventual 6G development
  • Increasing adoption in automotive safety and autonomous systems
  • Growth in medical imaging and diagnostic applications
  • Emergence of new consumer electronics applications

The emergence of new applications, particularly in IoT, automotive, and medical sectors, is expected to drive sustained growth through 2035, with potential for breakthrough applications in emerging fields such as quantum computing and advanced sensing systems.

"The Global PiezoMEMS Market 2025-2035" report analyzes the global piezoelectric MEMS (PiezoMEMS) sector, providing detailed insights into technology developments, market trends, and growth opportunities from 2025 to 2035. The study examines the entire value chain from materials and manufacturing to end-user applications, with particular focus on emerging technologies and market dynamics.

Report contents include:

  • Extensive analysis of the PiezoMEMS industry, including detailed market forecasts, technology assessments, and competitive analysis.
  • Key applications such as RF filters, sensors, actuators, and transducers across various sectors including consumer electronics, automotive, medical, and industrial applications.
  • Key Market Segments covered include:
    • Sensors (microphones, accelerometers, force sensors)
    • Actuators (inkjet printheads, microspeakers, optical MEMS)
    • Transducers (ultrasonic fingerprint sensors, medical imaging)
    • RF Filters (BAW technology, FBAR/SMR solutions)
  • Detailed market analysis including:
    • Global revenue projections (2025-2035)
    • Volume forecasts by device type
    • Regional market analysis
    • Production capacity assessment
    • Wafer-level analysis
    • Supply chain evaluation
  • Technology roadmaps and development trends
  • Manufacturing strategies and challenges
  • Regional market dynamics
  • Detailed analysis of key application areas:
    • Consumer electronics (smartphones, wearables)
    • Automotive sensors and actuators
    • Medical devices and imaging systems
    • Industrial applications
    • IoT and emerging applications
  • Manufacturing and Production:
    • Wafer fabrication processes
    • Integration technologies
    • Quality control methods
    • Capacity utilization
    • Regional production distribution
    • Cost analysis
  • Technology Trends and Innovation:
    • Material innovations and enhancements
    • Manufacturing advances
    • Device miniaturization
    • Performance improvements
    • Novel applications
    • Integration strategies
  • Market opportunities and growth drivers:
    • Technical barriers and solutions
    • Market adoption factors
    • Competition analysis
    • Environmental considerations
    • Regulatory compliance
    • Future opportunities
    • Comprehensive profiles of over 100 companies including:
    • Major MEMS manufacturers
    • Material suppliers
    • Equipment providers
    • Technology developers
    • End-product manufacturers

Companies covered include:

  • AAC Technologies
  • Aeponyx
  • AKM
  • Akoustis
  • AlphaMOS
  • Alps Alpine
  • AMFitzgerald-MEMS Infinity
  • Amphenol
  • Analog Devices
  • Anello Photonics
  • Asia Pacific Microsystems
  • ASMC (Advanced Semiconductor Manufacturing Corporation Limited)
  • Aspinity
  • Atomica
  • Beijing Zhixin Tech
  • Blickfeld
  • Bosch
  • Broadcom
  • Butterfly Network
  • Canon Inc.
  • CEA Leti
  • Cirrus Logic
  • Denso
  • EpicMEMS
  • eXo
  • Flusso
  • Formfactor
  • Fraunhofer IPMS
  • Fujifilm Dimatix
  • Gettop
  • GMEMS Technologies
  • Goermicro
  • Goertek
  • Guide Sensmart Technology Co. Ltd.
  • GWIC (Guangdong WIT Integrated Circuits Co. Ltd.)
  • Hanking Electronics
  • Heimann Sensor
  • Hewlett Packard
  • Hikvision (Hikmicro)
  • Honeywell
  • HuaHong Grace Semiconductor Manufacturing Corporation
  • Huntersun
  • Hypernano
  • IceMOS Technology Ltd.
  • Illumina
  • Infineon Technologies
  • InfiRay
  • Instrumems
  • Melexis
  • MEMJET
  • MEMSCAP SA
  • MEMSDrive
  • MEMSensing
  • MEMSIC
  • MEMSonics
  • Merit Sensor
  • Merry Electronics
  • Microchip Technology Inc.
  • Microfab Technologies Inc.
  • Micronit Microtechnologies B.V.
  • Minebea Mitsumi
  • Mirrorcle
  • Murata
  • Nanox

and more......

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. The Global MEMS market
    • 1.1.1. Historical
    • 1.1.2. Current market (2024-2025)
  • 1.2. Overview of Piezoelectric Technology
    • 1.2.1. Fundamentals of Piezoelectricity
    • 1.2.2. Direct and Inverse Piezoelectric Effects
    • 1.2.3. Key Parameters and Measurements
    • 1.2.4. Design Considerations
  • 1.3. Evolution of PiezoMEMS Technology
  • 1.4. PiezoMEMS Market 2020-2024
    • 1.4.1. Market Size and Growth Trends
    • 1.4.2. Application Development
    • 1.4.3. Technology Advancement
  • 1.5. Technology Landscape
    • 1.5.1. Core Technologies
    • 1.5.2. PiezoMEMS technology as a key enabler for implementing generative AI capabilities in edge devices
    • 1.5.3. Integration Approaches
    • 1.5.4. Competing Technologies
    • 1.5.5. Technology Readiness Levels
  • 1.6. Regulatory Framework
    • 1.6.1. Environmental Regulations
    • 1.6.2. Safety Requirements
    • 1.6.3. Certification Processes
    • 1.6.4. Future Regulatory Trends

2. PIEZOELECTRIC MATERIALS AND TECHNOLOGIES

  • 2.1. Fundamentals of Piezoelectric Materials
    • 2.1.1. Working Principles
      • 2.1.1.1. Crystal Structure
      • 2.1.1.2. Polarization Mechanisms
      • 2.1.1.3. Electromechanical Coupling
      • 2.1.1.4. Material Physics
    • 2.1.2. Key Performance Metrics
      • 2.1.2.1. Piezoelectric Coefficients
      • 2.1.2.2. Coupling Factors
      • 2.1.2.3. Quality Factors
      • 2.1.2.4. Temperature Stability
      • 2.1.2.5. Reliability Metrics
    • 2.1.3. Manufacturing Processes
      • 2.1.3.1. Thin Film Deposition
      • 2.1.3.2. Material Processing
      • 2.1.3.3. Quality Control
      • 2.1.3.4. Process Integration
      • 2.1.3.5. Yield Management
  • 2.2. Material Categories
    • 2.2.1. Aluminum Nitride (AlN)
      • 2.2.1.1. Properties and Characteristics
      • 2.2.1.2. Applications
      • 2.2.1.3. Cost Structure
    • 2.2.2. Scandium-doped AlN
      • 2.2.2.1. Doping Effects
      • 2.2.2.2. Performance Improvements
      • 2.2.2.3. Manufacturing Challenges
      • 2.2.2.4. Cost-Benefit Analysis
      • 2.2.2.5. Market Adoption
    • 2.2.3. Lead Zirconate Titanate (PZT)
      • 2.2.3.1. Material Properties
      • 2.2.3.2. Processing Methods
      • 2.2.3.3. Performance Characteristics
      • 2.2.3.4. Environmental Concerns
      • 2.2.3.5. Application Areas
    • 2.2.4. Emerging Materials
      • 2.2.4.1. KNN
      • 2.2.4.2. LiNbO3
  • 2.3. Processing Technologies
    • 2.3.1. Thin-film Deposition
      • 2.3.1.1. Sputtering Techniques
      • 2.3.1.2. Chemical Vapor Deposition
      • 2.3.1.3. Sol-Gel Processing
      • 2.3.1.4. Other Methods
    • 2.3.2. Integration Techniques
      • 2.3.2.1. CMOS Integration
      • 2.3.2.2. Wafer Bonding
      • 2.3.2.3. Packaging Solutions
      • 2.3.2.4. Novel Approaches
    • 2.3.3. Quality Control Methods

3. MARKET ANALYSIS AND FORECASTS 2025-2035

  • 3.1. Market Size and Growth
    • 3.1.1. Global Revenue Projections
    • 3.1.2. Volume Forecasts
      • 3.1.2.1. Unit Production Trends
      • 3.1.2.2. Volume by Device Type
      • 3.1.2.3. Production Capacity Analysis
      • 3.1.2.4. Capacity Utilization Rates
    • 3.1.3. Regional Analysis
      • 3.1.3.1. North America
      • 3.1.3.2. Europe
      • 3.1.3.3. Asia Pacific
      • 3.1.3.4. China
  • 3.2. Market Segmentation
    • 3.2.1. By Device Type
    • 3.2.2. By Material Type
    • 3.2.3. By End-user Industry
  • 3.3. Wafer-level Analysis
    • 3.3.1. Wafer Starts by Material
    • 3.3.2. Wafer Size Trends
    • 3.3.3. Manufacturing Capacity
    • 3.3.4. Regional Production Distribution

4. APPLICATION SEGMENTS

  • 4.1. Sensors
    • 4.1.1. Microphones
    • 4.1.2. Accelerometers
    • 4.1.3. Force Sensors
    • 4.1.4. Market Forecast
  • 4.2. Actuators
    • 4.2.1. Inkjet Printheads
    • 4.2.2. Microspeakers
    • 4.2.3. Optical MEMS
    • 4.2.4. Market Forecast
  • 4.3. Transducers
    • 4.3.1. Ultrasonic Fingerprint Sensors
    • 4.3.2. Medical Imaging
    • 4.3.3. Market Forecast
  • 4.4. RF Filters
    • 4.4.1. BAW Technology
    • 4.4.2. FBAR/SMR Solutions
    • 4.4.3. Market Forecast

5. SUPPLY CHAIN

6. TECHNOLOGY TRENDS AND INNOVATION

  • 6.1. Material Innovations
    • 6.1.1. Enhanced Performance Materials
    • 6.1.2. Lead-free Alternatives
    • 6.1.3. Novel Compositions
  • 6.2. Manufacturing Advances
    • 6.2.1. Process Improvements
    • 6.2.2. Integration Technologies
    • 6.2.3. Quality Control Methods
  • 6.3. Device Innovations
    • 6.3.1. Miniaturization Trends
    • 6.3.2. Performance Enhancements
    • 6.3.3. New Applications

7. CHALLENGES AND OPPORTUNITIES

  • 7.1. Technical Challenges
  • 7.2. Market Barriers
  • 7.3. Growth Opportunities
  • 7.4. Future Applications

8. COMPANY PROFILES (106 company profiles)

9. APPENDICES

  • 9.1. Research Methodology
  • 9.2. Abbreviations

10. REFERENCES

List of Tables

  • Table 1. Global MEMS market 2020-2024 (Billion USD), by end user market
  • Table 2. Key piezoelectric parameters and their significance
  • Table 3. PiezoMEMS Market 2020-2024 (Billion USD)
  • Table 4. Core Technologies in PiezoMEMS
  • Table 5. PiezoMEMS Integration Approaches
  • Table 6. Comparison of Competing Technologies
  • Table 7. PiezoMEMS Technology Readiness Levels
  • Table 8. Key regulations affecting piezoMEMS industry
  • Table 9. PiezoMEMS key performance metrics
  • Table 10. PiezoMEMS Manufacturing Processes
  • Table 11. Thin film deposition in piezoMEMS fabrication
  • Table 12. Material processing
  • Table 13. Quality control in piezoMEMS manufacturing
  • Table 14. Process integration for piezoMEMS
  • Table 15. Yield management in piezoMEMS manufacturing
  • Table 16. Materials Categories for PiezoMEMS
  • Table 17. AlN Properties and Applications
  • Table 18. Cost-Benefit Analysis: ScAlN vs. AlN
  • Table 19. Sc-AlN vs standard AlN comparison
  • Table 20. PZT Variations and Properties
  • Table 21. PZT Processing Methods
  • Table 22. PZT performance metrics
  • Table 23. PZT Application Areas
  • Table 24. Emerging materials comparison
  • Table 25. Deposition Technology Comparison
  • Table 26. Process parameters for different methods
  • Table 27. Integration Challenges and Solutions
  • Table 28. Quality Control Parameters
  • Table 29. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Table 30. Estimated Unit Production (Millions), 2020-2035
  • Table 31. Production volumes by device type, 2020-2035
  • Table 32. Capacity Utilization Rates
  • Table 33. PiezoMEMS Market in North America
  • Table 34. PiezoMEMS Market in Europe
  • Table 35. PiezoMEMS Market in Asia-Pacific
  • Table 36. PiezoMEMS Market in China
  • Table 37. Regional market shares and growth rates
  • Table 38. Global PiezoMEMS Revenues by Device Type 2020-2035
  • Table 39. Global PiezoMEMS revenues by material type 2020-2035
  • Table 40. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Table 41. Wafer production trends
  • Table 42. Wafer Starts by Material
  • Table 43. PiezoMEMS wafer share by fab
  • Table 44. PiezoMEMS Applications in Sensors
  • Table 45. Global PiezoMEMS market forecast in Sensors (2024-2035)
  • Table 46. PiezoMEMS in Actuators
  • Table 47. Global PiezoMEMS market forecast Actuators (2024-2035)
  • Table 48. PiezoMEMS in Transducers
  • Table 49. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 50. PiezoMEMS in RF Filters
  • Table 51. Global PiezoMEMS market forecast in Transducers (2024-2035)
  • Table 52. Enhanced Performance Materials for PiezoMEMS
  • Table 53. PiezoMEMS Lead-free Alternatives
  • Table 54. Manufacturing Advances
  • Table 55. Integration technologies for piezoMEMS
  • Table 56. Miniaturization Trends
  • Table 57. Performance enhancements in piezoMEMS devices
  • Table 58. Emerging applications for piezoMEMS technologies
  • Table 59. PiezoMEMS technical challenges
  • Table 60. Market barriers for piezoMEMS technologies
  • Table 61. Growth opportunities for piezoMEMS
  • Table 62. Future applications analysis
  • Table 63. Abbreviations

List of Figures

  • Figure 1. Global MEMS market 2020-2024 (Billions USD), by end user market
  • Figure 2. Schematic illustration of piezoelectric effect
  • Figure 3. Evolution of PiezoMEMS Technology
  • Figure 4. PiezoMEMS Market 2020-2024 (Billion USD)
  • Figure 5. PiezoMEMS material roadmap
  • Figure 6. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD)
  • Figure 7. Estimated Unit Production (Millions), 2020-2035
  • Figure 8. Global PiezoMEMS revenues by device type 2020-2035
  • Figure 9. Global PiezoMEMS revenues by material type 2020-2035
  • Figure 10. Global PiezoMEMS revenues by end-user industry 2020-2035
  • Figure 11. Wafer capacity by region
  • Figure 12. Global PiezoMEMS market forecast in Sensors (2024-2035) BILLIONS USD
  • Figure 13. Global PiezoMEMS market forecast Actuators (2024-2035), BILLIONS USD
  • Figure 14. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 15. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD
  • Figure 16. PiezoMEMS Market supply chain
  • Figure 17. Bosch - BMI270 6-axis IMU
  • Figure 18. Broadcom - FBAR RF Filter Products
  • Figure 19. Butterfly Network - Butterfly iQ+ Ultrasound System
  • Figure 20. Fujifilm Dimatix - Samba Printhead Technology
  • Figure 21. Infineon - XENSIV(TM) MEMS Microphones
  • Figure 22. Murata - SAW Filter Products
  • Figure 23. poLight - TLens-R Autofocus Actuator
  • Figure 24. Qualcomm - 3D Sonic Sensor (Ultrasonic Fingerprint)
  • Figure 25. Qorvo - BAW Filter Portfolio
  • Figure 26. STMicroelectronics - MEMS microphones (MP23DB01HP)
  • Figure 27. TDK InvenSense - ICP-10125 High-Performance Pressure Sensor
  • Figure 28. USound - MEMS Speaker Technology
  • Figure 29. xMEMS - Montara Microspeaker