長期儲能 (LDES) 現實:材料與設備市場(共 35 個)、技術路線圖、製造商、贏家/輸家、替代技術(2024-2044 年)
市場調查報告書
商品編碼
1396214

長期儲能 (LDES) 現實:材料與設備市場(共 35 個)、技術路線圖、製造商、贏家/輸家、替代技術(2024-2044 年)

Long Duration Energy Storage LDES Reality: Materials, Equipment Markets in 35 Lines, Technology Roadmaps, Manufacturers, Winners, Losers, Alternatives 2024-2044

出版日期: | 出版商: Zhar Research | 英文 492 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

本報告分析了全球LDES(長期儲能)技術和市場,並對各種LDES技術進行了概述、市場規模展望、未來技術進步和市場成長潛力以及競爭狀況。我們正在調查。

概述

技術評估(共17項) 6 個結果章節架構 第 11 章SWOT評估 20 個結果主要結論 22 個結果預測分析(2024-2044) 35 個結果公司 104家公司新資訊圖表 143 個結果
報告結構

目錄

第 1 章執行摘要/結論

  • 本報告的目的和範圍
  • 本報告分析方法
  • 定義和需求
  • 網格 LDES 與超越網格 LDES 之間的需求截然不同(2024-2044 年)
  • LDES 的基本技術選項
  • 透過技術和位置實現的放電時間
  • 相關投資的經驗教訓:依技術和地點分類
  • 主要結論:市場
  • 主要結論:技術
  • 超越網格 LDES 強者:RFB 的成功及其市場差距
  • LDES(長期儲能)路線圖:2023-2044
  • 市場預測:總計 35 個(2024-2044 年)
    • LDES 市場整體規模(超過 8 小時,所有 11 個技術類別)(單位:十億美元,2023-2044 年),圖表
    • 按地區劃分的 LDES 市佔率(基於價值,所有 4 個地區,2024-2044 年)
    • 世界市場細分:依排放時間劃分(2024/2044)
    • LDES 全球市場:累計太瓦時(2024-2044 年)
    • LDES 全球市場:平均放電時段(2024-2044 年)
    • LDES 全球市場:累計 TW(2024-2044 年)
    • 超越電網 LDES 市場:按類別(共 8 種,單位:十億美元,2023-2044 年)、圖表
    • 全球 RFB 市場:網格/超越網格(價值基礎,2023-2044 年)、圖表和概述
    • 世界 RFB 市場:短期/LDES(金額基礎,2023-2044 年)、圖表和概述
    • 釩、鐵和其他 RFB 市場(單位:%,2024-2044)、圖表和概述
    • 常規/混合 RFB 的銷售額和份額(單位:%,2024-2044 年)

第 2 章簡介

  • 概述:能源儲存和緩解
    • 什麼是儲能?
    • 為什麼固定式儲能會取代便攜式儲能
    • LDES(長期儲能)的定義、新技術的需求、替代技術
    • 可選可用性,很少/不需要風能、太陽能和 LDES
    • LDES 的結構以及為什麼仍然需要它
  • 電力擴散、氫氣替代和 9 種萃取選項
  • 太陽能發電的大趨勢
  • 世界各地風能和太陽能的成長
  • 超越網格大趨勢
  • LCOS(平準化儲存成本)的概述、定義和實用性
  • 各類儲能的時間參數
  • 先進太陽能發電的進展及其對儲存的影響
    • 迄今的進展
    • 先進的太陽能發電
  • 先進的風力發電減少了對 LDES 的需求
    • 更高的渦輪機
    • 比較 AWE(機載風能)和海上電力以減少 LDES 的需求
  • 常規水力發電

第3章LDES設計原理、參數比較、趨勢、材料

  • 概述:網格 LDES 與超越網格 LDES 的定義、各種設計要求
  • 12 個 LDES 技術選項:7 個比較
  • 9 個主要 LDES 技術系列和 17 個其他標準
  • 延長 LDES 放電時間的競爭性進展:依技術分類
  • RFB 和其他選項:等效效率和儲存時間
  • LDES 技術可用性與空間效率
  • LCOS $/kWh 趨勢與儲存/放電時間之間的關係
  • LDES功率(GW)趨勢與儲存/放電時間之間的關係
  • LDES技術儲存天數和額定功率返回(MW)
  • LDES技術儲存天數與容量(MWh)
  • LDES 在各種延遲後提供峰值功率的潛力:透過技術
  • 用於 LDES 的加值金屬、化合物和薄膜
    • 摘要
    • 膜難度和使用/建議的材料
    • RFB 膜的難度等級以及使用/建議的材料

第 4 章 LDES 電池:氧化還原液流電池(RFB)

  • 摘要
  • RFB技術
    • 常規/混合及其化學特性(包含 2 項 SWOT 評估)
    • 依材料具體設計:釩、鐵及其變體、其他金屬配體、HBr、有機物、錳
  • SWOT評估:電力儲存用固定式/RFB
  • SWOT 評估:LDES 的 RFB 儲能
  • 參數評估:LDES 的 RFB
  • 56家RFB公司比較(8項):名稱、品牌、技術、技術支援狀況、追蹤Beyond Grid、追蹤LDES、評論
  • RFB製造商及預計製造商簡介(共48家)
  • 調查分析

第 5 章 LDES 電池:ACCB(高級/傳統結構電池)

  • 摘要
  • LDES 的 ACCB:SWOT 評估
  • LDES 的 ACCB:參數評估
  • 7家ACCB製造商比較(8項):名稱、品牌、技術、技術支援狀況、追蹤Beyond Grid、追蹤LDES、評論
  • 鐵空氣電池:Form Energy(美國)(含SWOT評估)
  • 繆斯鈣銻電池:Ambri(美國)(含SWOT評估)
  • 鎳氫電池:EnerVenue(美國)(含SWOT評估)
  • 許多公司正在進入鈉離子市場,但 Beyond Grid LDES 的潛力有限。
  • 硫鈉:NGK/BASF(日本/德國),其他(含SWOT評估)
  • 鋅空氣電池:eZinc(加拿大)(含SWOT評估)
  • 鹵化鋅電池:EOS Energy Enterprises(美國)(含SWOT評估)

第 6 章 LDES(壓縮空氣儲能)CAES

  • 摘要
  • 供應不足吸引克隆
  • CAES 市場定位
  • 參數評估:CAES 與 LAES
  • CAES 技術選項
    • 熱力學
    • 等容/等壓存儲
    • 絕熱冷卻選擇
  • CAES 製造商/專案/研究
    • 摘要
    • Siemens Energy (德國)
    • MAN Energy Solutions (德國)
    • 延長CAES儲存時間與放電期
    • 在英國/歐盟進行的研究
  • 系統設計者和供應商的 CAES 概況和評估
    • ALCAES(瑞士)
    • APEX CAES(美國)
    • Augwind Energy(以色列)
    • Cheesecake Energy(英國)
    • Corre Energy(荷蘭)
    • Gaelectric(愛爾蘭):失敗與經驗教訓
    • Huaneng Group(中國)
    • Hydrostor(加拿大)
    • LiGE Pty(南非)
    • Storelectric(英國)
    • Terrastor Energy Corporation (美國)
  • LDES 的 CAES 的 SWOT 評估

第 7 章化學中間體,氫氣、氨、甲烷 LDES

  • 摘要
  • LDES 中氫氣、甲烷和氨的比較
  • 關注既得利益
  • 氫經濟與電力的比較
  • 化學中間體LDES的最佳點
  • 根據有問題的假設來計算成功
  • 大型礦業公司謹慎支持多種選擇
  • 對於建築物而言,所有選項加起來可能會非常昂貴。
  • 儲氫技術
    • 摘要
    • 氫氣地下儲存選項
    • 用於電能傳輸和儲存的氫互連器
    • 電力系統用氫儲能專案回顧(共15個)
  • LDES儲氫參數評估
  • LDES 的氫氣、甲烷和氨的 SWOT 評估

第 8 章 LDES 液化氣:空氣 LAES 或或二氧化碳

  • 摘要
  • LAES(液態空氣儲能)系統原理
  • 能量密度較高,但 LCOS 通常比 CAES 高
  • 混合 LAES
  • LDES 的 LAES 參數評估
  • 延長LAES儲能/放電週期
  • Highview Power(英國):Zhar Research 的評估
  • Highview Power 以及澳洲、西班牙、智利和澳洲的合作夥伴
  • Phelas(德國)
  • LAES 分析:Mitsubishi, Hitachi, Linde, European Union等
  • LAES 與 LDES:SWOT 評估
  • 液化二氧化碳儲能:Energy Dome(義大利)
    • 概述與流程
    • Energy Dome的液化二氧化碳LDES:SWOT評估

第 9 章抽水蓄能水力發電 (PHES):傳統 PHES 與先進 APHES

  • 傳統 PHES
    • 概述:功能和可用位置
    • 三項基本技術
    • 世界各地的項目和意圖
    • 經濟
    • 參數評估
    • PHES 的 SWOT 評估
  • APHES(高級 PHES)- 無需山脈
    • 摘要
    • 地下增壓:Quidnet Energy(美國)
    • StEnSea(海底儲能)和 Ocean Grazer:與其他水下 LDES 的比較
    • 鹽洞鹽水:Cavern Energy(美國)
    • Mine storage(瑞典)
    • 重水的興起:RheEnergise(英國)
    • APHES SWOT 評估

第 10 章 SGES(固態重力儲能)

  • 摘要
  • LDES 的 SGES:參數評估
  • ARES(美國)
  • Energy Vault(瑞士)
  • Gravitricity(英國)
  • SinkFloat Solutions(法國)

第 11 章 ETES(熱能儲存)用於延遲供電

  • 摘要
  • LDES 的 ETES 參數評估
  • 特例:用於聚光太陽能發電的熔鹽存儲
  • 從 Azelio(瑞典)、Siemens Gamesa(德國)和 Stiesdal(丹麥)的失敗中學到的教訓
  • Antora(美國)
  • Malta Inc (德國)
  • LDES ETES 的 SWOT 評估
簡介目錄

Summary

REPORT STATISTICS
17-parameter technology appraisals:6
Chapters:11
SWOT appraisals:20
Key conclusions:22
Forecast lines 2024-2044:35
Companies:104
New infograms:143

At last, a report estimating what will happen with LDES not what special interest groups want to happen. A report that estimates winners and losers when research groups and trade associations must back their members. Such independent information is essential to those seeking to invest in LDES, supply materials, devices or otherwise participate in the LDES supply chain. Yes, this report even takes a close look at your value-added materials opportunities. Uniquely, it surfaces alternatives and impediments to LDES and all on the 20-year timescale necessary to really understand where we are headed. Alternatives include less-intermittent forms of solar and wave power, arriving tidal stream and other green generation with no long duration intermittency and grids spanning weather and time zones but there is more. This data-driven analysis still comes up with a large figure for the LDES market. It has the detail and information to correctly position your creation of a $10 billion LDES business, avoiding the traps, knowing the lessons of past failures. The author has already created several successful businesses and he has a Physics PhD in the subject.

The Executive summary and conclusions at 40 pages is sufficient in itself, giving definitions, background, success so far, infograms, technology and market roadmaps and 35 forecasts 2024-2044. Absorb lessons from recent investment in the LDES companies, technology toolkit, different needs for grid vs beyond-grid, gaps in the market, even projected technology and company winners and losers on current evidence.

The introduction, at 49 pages, gives the background including the solar and beyond-grid megatrends, many LDES alternatives that will limit, not eliminate the opportunity. Indeed, learn why these realistic LDES forecasts will make stationary storage become a larger value market that mobile storage. Understand Levelised Cost of Storage LCOS and many time-related parameters for storage. Here are the LDES alternatives in detail with appraisal.

The 18 pages of Chapter 2 "LDES design principles, parameter comparisons, trends and materials" open with the very different needs of grid and beyond grid LDES then it presents graphics describing how the technology options compare in appropriate graphed parameters. For example, the first three graphics present 12 LDES technology choices compared in 7 columns, nine primary LDES technology families, vs 17 other criteria then detailed progress competing for increasing LDES duration by technology. It ends with graphics analysing membrane materials and needs for many forms of LDES such as advanced conventional construction and redox flow batteries plus hydrogen fuel cells and electrolysers.

The rest of the report consists of drill-down chapters with many SWOT appraisals on each LDES technology in alphabetical order starting with 133 pages of Chapter 4, "Batteries for LDES: Redox flow batteries RFB". Technologies of the different chemistries and structures are explained with pros and cons including regular vs hybrid and the different chemistries. 56 RFB companies are compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment the see profiles of 48 RFB manufacturers and putative manufacturers followed by research pipeline analysis.

The 51 pages of Chapter 5, "Batteries for LDES: Advanced conventional construction batteries ACCB" use many graphics to present such things as a parameter appraisal of ACCB for LDES then seven ACCB manufacturers compared in 8 columns: name, brand, technology, tech. readiness, focus, LDES focus, comment. Subsections dive into iron-air: Form Energy USA with SWOT appraisal, molten calcium antimony: Ambri USA with SWOT appraisal, nickel hydrogen: EnerVenue USA with SWOT, sodium-ion with limited LDES potential, Sodium sulfur: NGK/ BASF Japan/ Germany and others with SWOT, zinc-air: eZinc Canada with SWOT, zinc halide EOS Energy Enterprises USA with SWOT.

Chapter 6. "Compressed air CAES" (51 pages) covers the basics, including physics, the global situation, activities of 13 key players, analysis of the research pipeline and ending with a SWOT. Then Chapter 7. "Chemical intermediary hydrogen, ammonia, methane LDES" (28 pages) explains this world of massive inefficiency but massive potential storage capacity under-ground. Hydrogen is compared to methane and ammonia for LDES delayed electricity and proposed hydrogen economy is compared to pure electrification. The sweet spot for chemical intermediary LDES is estimated but you are warned about calculating success based on dubious assumptions. Learn how mining giants prudently back many options but, for buildings, all chemical options are unimpressive. See technologies for hydrogen storage, hydrogen interconnectors for electrical energy transmission and storage and a review of 15 projects that use hydrogen for energy storage in a power system. The chapter ends with a parameter appraisal of hydrogen storage for LDES and SWOT appraisal of hydrogen, methane, ammonia for LDES.

Chapter 8. "Liquefied gas energy storage: Liquid air LAES or CO2" (23 pages) explains these intriguing options for grid storage without the massive earthworks of hydro, compressed air or hydrogen. Understand their higher energy density but often higher LCOS than CAES, hybrid LAES, parameter appraisal of LAES for LDES and scope for increasing the LAES storage time and discharge duration. Six company activities assessed, the research pipeline and two SWOT appraisals end this chapter.

Chapter 9. "Pumped hydro: conventional PHES and advanced APHES" (38 pages) is the world where about 95% of grid storage is of this type and maybe 99% of the electricity stored. Although some meets an LDES specification, it has been rarely used for this but now things change. Environmental objections and other siting limitations drive the need for advanced forms, mainly out of sight and not needing mountains, so more widely deployable. Learn conventional pumped hydro PHES with projects and intentions across the world, the economics, parameter appraisal and see a SWOT appraisal of PHES but more detailed is the analysis of advanced pumped hydro APHES. That means pressurised underground by Quidnet Energy USA, sea floor StEnSea Germany and Ocean Grazer Netherlands compared to other underwater LDES, brine in salt caverns Cavern Energy USA, mine storage Sweden, liquid heavier than concrete invisibly-pumped up mere hills by RheEnergise UK. There is a SWOT appraisal of APHES.

The 25 pages of Chapter 10. "Solid gravity energy storage SGES" cover the one with no self-leakage even for seasonal storage but many moving parts. See the overview and the IIASA, Austria proposal in 2023, the parameter appraisal of SGES for LDES, activity of four companies then SWOT appraisal. Much space is given to leaders Energy Vault with giant partners and huge units proceeding in China initially for short-term storage and Gravitricity, using mines in partnership with ABB and others.

The report closes by assessing the technology that has suffered the most exits. Deserving only 14 pages, Chapter 11. "Thermal energy storage for delayed electricity ETES" contrasts the great success of delayed heat with the inefficiency and limited parameters of thermally-delayed electricity. There is a parameter appraisal of ETES for LDES, the successful special case of molten salt storage for concentrated solar and the lessons of failure of Azelio Sweden, Siemens Gamesa Germany and Stiesdal Denmark. Learn why Antora USA and Malta Inc Germany hope to succeed by using different approaches and see a SWOT appraisal of ETES for LDES.

Report, “Long Duration Energy Storage LDES Reality: Materials, Equipment Markets in 35 Lines, Technology Roadmaps, Manufacturers, Winners, Losers, Alternatives 2024-2044 ” is up-to-date, realistic and detailed.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology of this analysis
  • 1.3. Definition and need
  • 1.4. The very different needs for grid vs beyond-grid LDES 2024-2044
  • 1.5. Basic technology choices for LDES
  • 1.6. Duration being achieved by technology and location
  • 1.7. Lesson from relative investment by technology and location
  • 1.8. Key conclusions: markets
  • 1.9. Key conclusions: technology
  • 1.10. Probable winner for beyond grid LDES: RFB success and gaps in its markets
  • 1.11. Long Duration Energy Storage LDES roadmap 2023-2044
  • 1.12. Market forecasts 2024-2044 in 35 lines
    • 1.12.1. Total LDES market 8 hours and above in 11 technology categories $ billion 2023-2044 table, graphs
    • 1.12.2. Regional share of LDES value market in four regions 2024-2044
    • 1.12.3. Global market split by duration 2024 and 2044
    • 1.12.4. Possible LDES global scenario TWh cumulative 2024-2044
    • 1.12.5. Possible LDES global scenario average duration 2024-2044
    • 1.12.6. Possible LDES global scenario TW cumulative 2024-2044
    • 1.12.7. Beyond-grid LDES market in 8 categories $ billion 2023-2044: table and line graphs
    • 1.12.8. RFB global value market grid vs beyond-grid 2023-2044 table, graph, explanation
    • 1.12.9. RFB global value market short term and LDES 2023-2044 table, graph, explanation
    • 1.12.10. Vanadium vs iron vs other RFB market % 2024-2044 table, graph, explanation
    • 1.12.11. Regular vs hybrid RFB % value sales 2024-2044

2. Introduction

  • 2.1. Overview: energy storage and its mitigation
    • 2.1.1. What is energy storage?
    • 2.1.2. Why stationary electricity storage will overtake mobile storage
    • 2.1.3. Long Duration Energy Storage definition, need for new technology and alternatives
    • 2.1.4. Capacity factor of wind, solar and options that need little or no LDES
    • 2.1.5. Anatomy of LDES and why it is still needed
  • 2.2. Going electric and the place of hydrogen and nine harvesting options
  • 2.3. The solar megatrend
  • 2.4. Growth of wind and solar energy sources across the world
  • 2.5. The beyond-grid megatrend
  • 2.6. Overview, definition and usefulness of Levelised Cost of Storage LCOS
  • 2.7. Many different time parameters for storage
  • 2.8. Progress to advanced photovoltaics and storage implications
    • 2.8.1. Progress so far
    • 2.8.2. Advanced photovoltaics
  • 2.9. Advanced wind power to reduce need for LDES
    • 2.9.1. Taller turbines
    • 2.9.2. Airborne Wind Energy AWE vs ocean power to reduce need for LDES
  • 2.10. Conventional hydropower

3. LDES design principles, parameter comparisons, trends and materials

  • 3.1. Overview: definition, different design requirements for grid vs beyond-grid LDES
  • 3.2. The 12 LDES technology choices compared in 7 columns
  • 3.3. Nine primary LDES technology families, vs 17 other criteria
  • 3.4. Progress competing for increasing LDES duration by technology
  • 3.5. Equivalent efficiency vs storage hours for RFB and other options
  • 3.6. Available sites vs space-efficiency for LDES technologies
  • 3.7. LCOS $/kWh trend vs storage and discharge time
  • 3.8. LDES power GW trend vs storage and discharge time
  • 3.9. Days storage vs rated power return MW for LDES technologies
  • 3.10. Days storage vs capacity MWh for LDES technologies
  • 3.11. Potential by technology to supply LDES at peak power after various delays
  • 3.12. Added value metals, compounds and membranes for LDES
    • 3.12.1. Overview
    • 3.12.2. Membrane difficulty levels and materials used and proposed
    • 3.12.3. RFB membrane difficulty levels and materials used and proposed

4. Batteries for LDES: Redox flow batteries RFB

  • 4.1. Overview
  • 4.2. RFB technologies
    • 4.2.1. Regular or hybrid and their chemistries with two SWOT appraisals
    • 4.2.2. Specific designs by material: vanadium, iron and variants, other metal ligand, HBr, organic, manganese
  • 4.3. SWOT appraisal of RFB for stationary storage
  • 4.4. SWOT appraisal of RFB energy storage for LDES
  • 4.5. Parameter appraisal of RFB for LDES
  • 4.6. 56. RFB companies compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment
  • 4.7. Profiles of 48 RFB manufacturers and putative manufacturers
  • 4.8. Research analysis

5. Batteries for LDES: Advanced conventional construction batteries ACCB

  • 5.1. Overview
  • 5.2. SWOT appraisal of ACCB for LDES
  • 5.3. Parameter appraisal of ACCB for LDES
  • 5.4. Seven ACCB manufacturers compared: 8 columns: name, brand, technology, tech. readiness, beyond-grid focus, LDES focus, comment
  • 5.5. Iron-air: Form Energy USA with SWOT appraisal
  • 5.6. Molten calcium antimony: Ambri USA with SWOT appraisal
  • 5.7. Nickel hydrogen: EnerVenue USA with SWOT
  • 5.8. Sodium-ion many companies but limited beyond-grid LDES potential
  • 5.9. Sodium sulfur: NGK/ BASF Japan/ Germany and others with SWOT
  • 5.10. Zinc-air: eZinc Canada with SWOT
  • 5.11. Zinc halide EOS Energy Enterprises USA with SWOT

6. Compressed air CAES for LDES

  • 6.1. Overview
  • 6.2. Undersupply attracts clones
  • 6.3. Market positioning of CAES
  • 6.4. Parameter appraisal of CAES vs LAES
  • 6.5. CAES technology options
    • 6.5.1. Thermodynamic
    • 6.4.2. Isochoric or isobaric storage
    • 6.4.3. Adiabatic choice of cooling
  • 6.6. CAES manufacturers, projects, research
    • 6.6.1. Overview
    • 6.6.2. Siemens Energy Germany
    • 6.6.3. MAN Energy Solutions Germany
    • 6.6.4. Increasing the CAES storage time and discharge duration
    • 6.6.5. Research in UK and European Union
  • 6.7. CAES profiles and appraisal of system designers and suppliers
    • 6.7.1. ALCAES Switzerland
    • 6.7.2. APEX CAES USA
    • 6.7.3. Augwind Energy Israel
    • 6.7.4. Cheesecake Energy UK
    • 6.7.5. Corre Energy Netherlands
    • 6.7.6. Gaelectric failure Ireland - lessons
    • 6.7.7. Huaneng Group China
    • 6.7.8. Hydrostor Canada
    • 6.7.9. LiGE Pty South Africa
    • 6.7.10. Storelectric UK
    • 6.7.11. Terrastor Energy Corporation USA
  • 6.8. SWOT appraisal of CAES for LDES

7. Chemical intermediary hydrogen, ammonia, methane LDES

  • 7.1. Overview
  • 7.2. Hydrogen compared to methane and ammonia for LDES
  • 7.3. Beware vested interests
  • 7.4. The hydrogen economy vs electricity
  • 7.5. Sweet spot for chemical intermediary LDES
  • 7.6. Calculating success based on dubious assumptions
  • 7.7. Mining giants prudently back many options
  • 7.8. For buildings, all options together would be too expensive
  • 7.9. Technologies for hydrogen storage
    • 7.9.1. Overview
    • 7.9.2. Choices of underground storage for hydrogen
    • 7.9.3. Hydrogen interconnectors for electrical energy transmission and storage
    • 7.9.4. Review of 15 projects that use hydrogen for energy storage in a power system
  • 7.10. Parameter appraisal of hydrogen storage for LDES
  • 7.11. SWOT appraisal of hydrogen, methane, ammonia for LDES

8. Liquefied gas for LDES- air LAES or carbon dioxide

  • 8.1. Overview
  • 8.2. Principle of liquid air energy storage system
  • 8.3. Higher energy density but often higher LCOS than CAES
  • 8.4. Hybrid LAES
  • 8.5. Parameter appraisal of LAES for LDES
  • 8.6. Increasing the LAES storage time and discharge duration
  • 8.7. Highview Power UK with Zhar research appraisal
  • 8.8. Highview Power and partners in Australia, Spain, Chile, Australia
  • 8.9. Phelas Germany
  • 8.10. LAES research: Mitsubishi, Hitachi, Linde, European Union, Others
  • 8.11. SWOT appraisal of LAES for LDES
  • 8.12. Liquid carbon dioxide energy storage: Energy Dome Italy
    • 8.12.1. Overview and process
    • 8.12.2. SWOT appraisal of Energy Dome liquid carbon dioxide LDES.

9. Pumped hydro: conventional PHES and advanced APHES

  • 9.1. Conventional pumped hydro PHES
    • 9.1.1. Overview: capability and available sites
    • 9.1.2. Three basic technologies
    • 9.1.3. Projects and intentions across the world
    • 9.1.4. Economics
    • 9.1.5. Parameter appraisal
    • 9.1.6. SWOT appraisal of PHES
  • 9.2. Advanced pumped hydro APHES does not need mountains
    • 9.2.1. Overview
    • 9.2.2. Pressurised underground: Quidnet Energy USA
    • 9.2.3. Sea floor StEnSea and Ocean Grazer compared to other underwater LDES
    • 9.2.4. Brine in salt caverns Cavern Energy USA
    • 9.2.5. Mine storage Sweden
    • 9.2.6. Heavy water up hills RheEnergise UK
    • 9.2.7. SWOT appraisal of APHES

10. Solid gravity energy storage SGES

  • 10.1. Overview
  • 10.2. Parameter appraisal of SGES for LDES
  • 10.3. ARES USA
  • 10.4. Energy Vault Switzerland
  • 10.5. Gravitricity UK
  • 10.6. SinkFloat Solutions France

11. Thermal energy storage for delayed electricity ETES

  • 11.1. Overview
  • 11.2. Parameter appraisal of ETES for LDES
  • 11.3. Special case: molten salt storage for concentrated solar
  • 10.4. Lessons from failure of Azelio Sweden, Siemens Gamesa Germany and Stiesdal Denmark
  • 11.5. Antora USA
  • 11.6. Malta Inc Germany
  • 11.7. SWOT appraisal of ETES for LDES