![]() |
市場調查報告書
商品編碼
1914543
光電裝置市場-全球產業規模、佔有率、趨勢、預測及機會(按產品、應用、產業、地區及競爭格局分類),2021-2031年Photonics Devices Market - Global Industry Size, Share, Trends, Forecast and Opportunities, Segmented By Product, By Application, By Industry Vertical, By Region & Competition, 2021-2031F |
||||||
全球光電元件市場預計將從 2025 年的 9,699.3 億美元成長到 2031 年的 1,4442.1 億美元,複合年成長率為 6.86%。
這些設備由用於產生、偵測和操控光粒子的硬體組件所構成,廣泛應用於通訊、醫療診斷等領域。市場成長主要得益於全球對高速資料傳輸基礎設施日益成長的需求,以及向節能照明和顯示技術的顯著轉變。此外,產業部門對光學技術在精密製造和自動化方面的依賴性不斷增強,也持續推動產業收入的成長。根據SPIE 2025年發布的《光學與光電全球產業報告》,預計到2023年,光學和光電核心組件的全球年收入將達到3,450億美元。
| 市場概覽 | |
|---|---|
| 預測期 | 2027-2031 |
| 市場規模:2025年 | 9699.3億美元 |
| 市場規模:2031年 | 1,444,210 萬美元 |
| 複合年成長率:2026-2031年 | 6.86% |
| 成長最快的細分市場 | 醫療技術與生命科學 |
| 最大的市場 | 北美洲 |
光子封裝技術成本高且技術複雜,是市場擴張的主要障礙。光子元件與電子元件的整合製程複雜,需要極高的精度,這往往會導致製造成本增加和產量比率降低。這種技術壁壘會限制先進光子解決方案在對成本敏感的消費性應用中的廣泛應用,並阻礙中小製造商的擴充性。
對高速資料傳輸的快速成長的需求以及5G網路的擴展是全球光電元件市場的主要驅動力。隨著通訊基礎設施的升級以支援人工智慧和雲端運算等頻寬密集型應用,迫切需要能夠降低延遲的先進光收發器和互連技術。這種基礎設施現代化是由下一代網路的快速成長所驅動的,而下一代網路也構成了這些組件的主要目標市場。根據GSMA於2024年2月發布的《2024年移動經濟》報告,到2023年底,全球5G連線數將達到16億,這需要廣泛部署光回程傳輸系統。因此,超大規模資料中心正在大幅增加對光硬體的投資,以應對不斷成長的流量。博通公司在截至2024年3月的會計年度中報告稱,其網路相關收入年增46%至33億美元,這主要得益於人工智慧叢集中光連接系統的部署。
同時,雷射雷達和光學感測器在汽車高級駕駛輔助系統(ADAS)中的快速整合,正在創造一個清晰的高成長收入管道。汽車製造商正逐步採用基於光子技術的雷射雷達,以實現高度自動駕駛所需的空間精度,超越傳統的雷達和攝影機。這項技術演進直接體現在主要感測器供應商產量的成長上,他們正從原型測試走向大規模商業化。例如,和賽科技在2024年5月的新聞稿中宣布,其雷射雷達出貨量已超過50萬台,這標誌著光子感測技術在現代乘用車和商用車中的應用勢頭日益強勁。
光子封裝的高成本和先進技術是其市場擴張的主要障礙,尤其是在對成本敏感的應用領域,這阻礙了其普及。與標準電子封裝不同,光子封裝需要以亞微米級精度對光學和電子元件進行異質整合。這種嚴苛的要求需要昂貴的專用自動化設備,導致生產效率低下,使得大規模生產的消費性電子產品單位製造成本居高不下。因此,該行業難以從利基高性能應用領域過渡到大規模商業應用領域。
此外,這些高昂的技術和財務壁壘造就了高度集中的市場結構,嚴重限制了新參與企業的擴充性。建造高產量比率封裝設施所需的大量資本投資,使得中小企業難以與產業領導者有效競爭。這種集中度體現在市場價值分佈的不均衡。根據SPIE 2025年《光學與光電全球產業報告》,到2023年,約6%的公司將佔全球總收入的86%以上。如此高的集中度表明,製造和封裝的複雜性有效地限制了大多數行業參與者的成長機會,從而抑制了整個市場的多樣性和創新速度。
隨著量子光電的商業化從研究環境走向實際規模的基礎設施,光學元件領域正在形成一個重要的垂直整合區域。這項轉變需要大量資本投資來建構採用光子互連技術的高可靠性量子電腦,這使得該領域與傳統通訊技術截然不同。公共部門機構致力於確保自主製造能力以加速這項技術的發展,這是一項關鍵進展。例如,2024年4月,澳洲政府工業、科學和資源部承諾向PsiQuantum公司提供約9.4億澳元,用於建造世界上第一台商用量子電腦。這項工作需要用於製造超低損耗波導管和單光子檢測器的新型製造技術,這將使專業供應商能夠拓展收入來源,超越傳統市場。
同時,業界正日益採用共封裝光學元件 (CPO) 來克服電輸入/輸出系統固有的功率限制。隨著運算負載的增加,標準可插拔收發器面臨散熱瓶頸,因此需要將光子引擎直接整合到邏輯處理器附近。領先的半導體公司正在檢驗這些解決方案,以在下一代架構中取代銅互連,這標誌著組件設計的根本性轉變。根據英特爾 2024 年 6 月發布的新聞稿,該公司推出了一款全新的全整合式光運算互連晶片,能夠支援 4 Terabit的雙向資料傳輸。這項發展正迫使供應鏈從分立模組組裝轉向先進的晶圓級異質整合技術。
The Global Photonics Devices Market is projected to expand from USD 969.93 Billion in 2025 to USD 1444.21 Billion by 2031, registering a CAGR of 6.86%. These devices consist of hardware components engineered to generate, detect, or manipulate light particles, serving diverse applications from telecommunications to medical diagnostics. Market growth is fundamentally underpinned by the rising global requirement for high-speed data transmission infrastructure and the critical transition toward energy-efficient lighting and display technologies. Furthermore, the industrial sector's dependence on optical technologies for precision manufacturing and automation continues to drive industry earnings. The SPIE 2025 Optics and Photonics Global Industry Report notes that global annual revenues from optics and photonics core components reached $345 billion in 2023.
| Market Overview | |
|---|---|
| Forecast Period | 2027-2031 |
| Market Size 2025 | USD 969.93 Billion |
| Market Size 2031 | USD 1444.21 Billion |
| CAGR 2026-2031 | 6.86% |
| Fastest Growing Segment | Medical Technology & Life Sciences |
| Largest Market | North America |
A major obstacle hindering wider market growth is the significant cost and technical intricacy involved in photonic packaging. The complex procedure of integrating optical components with electronic circuits demands extreme precision, often resulting in increased manufacturing expenses and reduced production yields. This technical barrier can constrain the widespread adoption of advanced photonic solutions in cost-sensitive consumer applications and restrict scalability for smaller manufacturers.
Market Driver
The accelerating demand for high-speed data transmission and the expansion of 5G networks act as the primary catalyst for the global photonics devices market. As telecommunications infrastructure is upgraded to accommodate bandwidth-heavy applications such as artificial intelligence and cloud computing, there is an urgent requirement for advanced optical transceivers and interconnects that reduce latency. This infrastructure modernization is highlighted by the rapid growth of next-generation networks, which defines the core addressable market for these components. According to the GSMA's 'The Mobile Economy 2024' report from February 2024, global 5G connections hit 1.6 billion by the end of 2023, requiring extensive deployment of optical backhaul systems. Consequently, hyperscale data centers are significantly increasing investment in optical hardware to handle this rising traffic, with Broadcom Inc. reporting in its March 2024 results that networking revenue rose 46% year-over-year to $3.3 billion, driven largely by optical connectivity deployments in AI clusters.
Concurrently, the swift integration of LiDAR and optical sensors into automotive Advanced Driver Assistance Systems (ADAS) is generating a distinct, high-growth revenue channel. Car manufacturers are progressively advancing beyond conventional radar and cameras, adopting photonic-based LiDAR to attain the spatial accuracy necessary for elevated levels of vehicle autonomy. This technical evolution is directly evidenced by the increasing production volumes of leading sensor suppliers, who are shifting from prototype testing to mass-market commercialization. For instance, Hesai Technology announced in a May 2024 press release that it had cumulatively shipped over 500,000 LiDAR units, demonstrating the gathering momentum of photonic sensing technology adoption in modern passenger and commercial vehicles.
Market Challenge
The substantial cost and technical sophistication required for photonic packaging serve as a major bottleneck for market expansion, specifically by delaying adoption in cost-sensitive sectors. In contrast to standard electronic packaging, photonic packaging necessitates the heterogeneous integration of optical and electrical components with sub-micron alignment precision. This exacting requirement calls for costly, specialized automated machinery and results in lower throughput rates, keeping per-unit manufacturing costs prohibitively high for mass-market consumer electronics. As a result, the industry faces difficulties in transitioning from niche, high-performance applications to high-volume commercial utilization.
Moreover, these high technical and financial hurdles foster a consolidated market structure that severely limits scalability for smaller market entrants. The significant capital expenditure needed to set up high-yield packaging facilities stops small-to-medium enterprises from effectively competing with established industry leaders. This consolidation is reflected in the skewed distribution of market value; according to the SPIE 2025 Optics and Photonics Global Industry Report, roughly 6% of companies accounted for over 86% of total global revenues in 2023. This high concentration ratio demonstrates how manufacturing and packaging complexities effectively cap growth opportunities for the vast majority of industry participants, thereby restricting overall market diversity and innovation rates.
Market Trends
The transition of quantum photonics commercialization from research environments to utility-scale infrastructure is establishing a critical vertical for optical components. This shift entails significant capital investment aimed at constructing fault-tolerant quantum computers that employ photonic interconnects, setting this segment apart from standard telecommunications. A key expansion was marked by public sector entities securing sovereign manufacturing capabilities to hasten this technology's development. For example, the Australian Government Department of Industry, Science and Resources announced in April 2024 a commitment of approximately $940 million AUD to PsiQuantum to build the world's first commercially useful quantum computer. This initiative necessitates novel fabrication techniques for ultra-low-loss waveguides and single-photon detectors, thereby diversifying revenue streams for specialized vendors beyond traditional markets.
Simultaneously, the industry is embracing Co-Packaged Optics (CPO) to overcome the power limitations inherent in electrical input/output systems. As computational workloads grow, standard pluggable transceivers encounter thermal bottlenecks, requiring the integration of photonic engines directly adjacent to logic processors. Major semiconductor companies are validating these solutions to supersede copper interconnects in next-generation architectures, which fundamentally alters component design. According to an Intel Corporation press release in June 2024, the company showcased a new fully integrated Optical Compute Interconnect Chiplet capable of supporting 4 Terabits per second (Tbps) of bidirectional data transfer. This progression compels the supply chain to pivot from discrete module assembly toward advanced wafer-level heterogeneous integration.
Report Scope
In this report, the Global Photonics Devices Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Photonics Devices Market.
Global Photonics Devices Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: