封面
市場調查報告書
商品編碼
1785216

生物製造市場-全球產業規模、佔有率、趨勢、機會和預測,按工作流程、按應用、按最終用戶、按地區和競爭進行細分,2020 年至 2030 年

Bio-Manufacturing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Workflow, By Application, By End User, By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球生物製造市場價值為 190.8 億美元,預計在預測期內將實現令人印象深刻的成長,到 2030 年的複合年成長率為 7.72%。生物製造市場是生物技術和製藥行業的一個重要部分,專注於生物衍生產品的大規模生產。這些產品包括單株抗體、治療性蛋白質、細胞和基因療法、疫苗等生物製藥,以及無法透過傳統化學合成生產的複雜生物製品。生物製造涉及一系列複雜的過程,包括細胞培養、發酵、純化和品質控制,通常需要高度受控的環境和先進的生物反應器系統。這個市場在確保全球患者能夠獲得拯救生命和改善生活的療法方面發揮著至關重要的作用。在個人化醫療需求不斷成長、慢性病患病率上升以及基因工程快速發展的推動下,生物製造業正在經歷大幅成長。

市場概覽
預測期 2026-2030
2024年市場規模 190.8億美元
2030年市場規模 295.7億美元
2025-2030 年複合年成長率 7.72%
成長最快的領域 一次性上游生物製造
最大的市場 北美洲

例如,根據世界衛生組織統計,糖尿病患者數量從 1990 年的 2 億增加到 2022 年的 8.3 億。中低收入國家的糖尿病患者數量成長速度明顯快於高收入國家,凸顯了全球健康挑戰日益嚴峻,發展中國家需要有針對性的預防和管理策略。一次性技術、自動化和連續生物加工等創新正在改變生產能力、提高效率並降低成本。生物藥物研發管線的不斷擴大和生物相似藥的出現正在為市場創造新的機會。監管機構也在進行調整,以支持加快核准和提高生產彈性。隨著科學研究的不斷進步,生物製造市場將在應對全球醫療保健挑戰方面發揮越來越重要的作用,從而加快下一代療法的開發和分銷。

關鍵市場促進因素

採用先進技術與新創新

主要市場挑戰

巨額資本支出

主要市場趨勢

連續生物製造的出現

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球生物製造市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 依工作流程(連續上游生物製造、一次性上游生物製造、下游生物製造)
    • 依應用(單株抗體、荷爾蒙、疫苗、重組蛋白、其他)
    • 按最終用戶(生物製藥公司、研究機構、CMO/CDMO)
    • 按地區
    • 按公司分類(2024)
  • 市場地圖

第6章:北美生物製造市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲生物製造市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙

第8章:亞太生物製造市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:南美洲生物製造市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東與非洲生物製造市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第 13 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品的威脅

第 14 章:競爭格局

  • Illumina Inc.
  • Thermo Fischer Scientific Inc.
  • Oxford Nanopore Technologies plc
  • Agilent Technologies, Inc.
  • BGI Genomics Co. Ltd.
  • PerkinElmer Inc.
  • QIAGEN NV
  • Eurofins Scientific Inc.
  • F. Hoffmann-La Roche Ltd
  • Takara Bio Inc.

第 15 章:策略建議

第16章調查會社について,免責事項

簡介目錄
Product Code: 4672

Global Bio-Manufacturing Market has valued at USD 19.08 Billion in 2024 and is anticipated to project impressive growth in the forecast period with a CAGR of 7.72% through 2030. The biomanufacturing market is a vital segment within the biotechnology and pharmaceutical industry, focusing on the large-scale production of biologically derived products. These include biopharmaceuticals such as monoclonal antibodies, therapeutic proteins, cell and gene therapies, vaccines, and other complex biological products that cannot be produced through traditional chemical synthesis. Biomanufacturing involves a range of sophisticated processes, including cell culture, fermentation, purification, and quality control, often requiring highly controlled environments and advanced bioreactor systems. This market plays a crucial role in ensuring the availability of life-saving and life-enhancing therapies for patients across the globe. Driven by increasing demand for personalized medicine, rising prevalence of chronic diseases, and rapid advances in genetic engineering, the biomanufacturing sector is experiencing substantial growth.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 19.08 Billion
Market Size 2030USD 29.57 Billion
CAGR 2025-20307.72%
Fastest Growing SegmentSingle-Use Upstream Biomanufacturing
Largest MarketNorth America

For instance, according to WHO, the number of people living with diabetes increased from 200 million in 1990 to 830 million in 2022. The rise has been significantly faster in low- and middle-income countries compared to high-income nations, highlighting a growing global health challenge and the need for targeted prevention and management strategies in developing regions. Innovations such as single-use technologies, automation, and continuous bioprocessing are transforming production capabilities, enhancing efficiency, and reducing costs. The expanding pipeline of biologic drugs and the emergence of biosimilars are creating new opportunities within the market. Regulatory agencies are also adapting to support accelerated approvals and manufacturing flexibility. As scientific research continues to advance, the biomanufacturing market is poised to become increasingly essential in addressing global healthcare challenges, enabling faster development and distribution of next-generation therapies.

Key Market Drivers

Adoption of Advanced Technology and New Innovation

The rise in the geriatric population and the prevalence of chronic respiratory disorders are anticipated to drive the demand for ventilators. Increasing awareness of lung cancer symptoms and a growing number of patients in medical facilities contribute to the significant market growth of ventilators. For instance, in November 2023, the FDA approved Ixchiq, the first vaccine for chikungunya, for adults aged 18 and older. In December 2023, the FDA approved Casgevy and Lyfgenia-the first cell-based gene therapies-for treating sickle cell disease in patients aged 12 and older, marking major milestones in infectious disease prevention and genetic disorder treatment. However, it should be noted that the use of mechanical ventilation may pose certain risks, such as increased infection risk and potential damage to the lungs. These considerations should be taken into account when assessing the market growth potential of Bio-Manufacturing. Advanced technologies such as automation, robotics, and process control systems can streamline biomanufacturing processes, reduce human error, and enhance overall production efficiency. This can lead to quicker turnaround times and increased production capacity, meeting the growing demand for biologics. Innovative bioreactor designs, single-use technologies, and flexible manufacturing platforms allow for easier scalability of production. As demand for bio manufactured products grows, the ability to quickly scale up production will become essential. Continuous manufacturing approaches, as opposed to traditional batch processes, can lead to consistent product quality, reduced wastage, and improved resource utilization. These advantages can boost demand for bio manufactured products.

Key Market Challenges

Huge Capital Expenditure

The biomanufacturing process involves intricate and specialized equipment, facilities, and technologies, which can require significant financial investments. Setting up a biomanufacturing facility or upgrading existing infrastructure requires substantial initial capital investment. This includes the construction or renovation of specialized cleanrooms, purchase of bioreactors, purification equipment, and other sophisticated tools necessary for biopharmaceutical production. The substantial capital required for biomanufacturing can divert resources away from other critical areas such as research and development, marketing, and business expansion. This resource allocation challenge can impact a company's overall growth strategy. The high capital expenditure can result in overestimation or underutilization of manufacturing capacity. If demand for the manufactured product is lower than anticipated, the investment may not yield the expected returns.

Key Market Trends

Emergence of Continuous Biomanufacturing

The emergence of continuous biomanufacturing has the potential to significantly boost the growth of the biomanufacturing industry in the future. Continuous biomanufacturing represents a departure from traditional batch processes by enabling the seamless, uninterrupted production of biopharmaceuticals and other biologically derived products. This innovative approach offers several benefits that can positively impact efficiency, flexibility, cost-effectiveness, and overall market expansion. Continuous biomanufacturing allows for continuous monitoring and adjustment of process parameters in real-time. This leads to improved process control, reduced variability, and enhanced product consistency, resulting in higher process efficiency and reduced production times. Continuous biomanufacturing systems are generally more compact and require less physical space than traditional batch systems. This reduction in facility footprint can lead to cost savings and greater flexibility in facility design and location. Continuous biomanufacturing can enable higher production capacities by running processes continuously, thereby increasing output without the need for significant facility expansion. This increased capacity can meet the growing demand for biopharmaceuticals and other biologically derived products.

Key Market Players

Illumina Inc.

Thermo Fischer Scientific Inc.

Oxford Nanopore Technologies plc

Agilent Technologies, Inc.

BGI Genomics Co. Ltd.

PerkinElmer Inc.

QIAGEN NV

Eurofins Scientific Inc.

F. Hoffmann-La Roche Ltd

Takara Bio Inc.

Report Scope:

In this report, the Global Bio-Manufacturing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Bio-Manufacturing Market, By Workflow:

  • Continuous Upstream Biomanufacturing
  • Single-Use Upstream Biomanufacturing
  • Downstream Biomanufacturing

Bio-Manufacturing Market, By Application:

  • Monoclonal Antibodies
  • Hormones
  • Vaccines
  • Recombinant Proteins
  • Others

Bio-Manufacturing Market, By End User:

  • Biopharmaceutical Companies
  • Research Institutions
  • CMOs/CDMOs

Bio-Manufacturing Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Bio-Manufacturing Market.

Available Customizations:

Global Bio-Manufacturing market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Bio-Manufacturing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Workflow (Continuous Upstream Biomanufacturing, Single-Use Upstream Biomanufacturing, Downstream Biomanufacturing)
    • 5.2.2. By Application (Monoclonal Antibodies, Hormones, Vaccines, Recombinant Proteins, Others)
    • 5.2.3. By End User (Biopharmaceutical Companies, Research Institutions, CMOs/CDMOs)
    • 5.2.4. By Region
    • 5.2.5. By Company (2024)
  • 5.3. Market Map

6. North America Bio-Manufacturing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Workflow
    • 6.2.2. By Application
    • 6.2.3. By End Use
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Bio-Manufacturing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Workflow
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End Use
    • 6.3.2. Canada Bio-Manufacturing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Workflow
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End Use
    • 6.3.3. Mexico Bio-Manufacturing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Workflow
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End Use

7. Europe Bio-Manufacturing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Workflow
    • 7.2.2. By Application
    • 7.2.3. By End Use
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Bio-Manufacturing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Workflow
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End Use
    • 7.3.2. United Kingdom Bio-Manufacturing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Workflow
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End Use
    • 7.3.3. Italy Bio-Manufacturing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Workflow
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End Use
    • 7.3.4. France Bio-Manufacturing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Workflow
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End Use
    • 7.3.5. Spain Bio-Manufacturing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Workflow
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End Use

8. Asia-Pacific Bio-Manufacturing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Workflow
    • 8.2.2. By Application
    • 8.2.3. By End Use
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Bio-Manufacturing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Workflow
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End Use
    • 8.3.2. India Bio-Manufacturing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Workflow
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End Use
    • 8.3.3. Japan Bio-Manufacturing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Workflow
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End Use
    • 8.3.4. South Korea Bio-Manufacturing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Workflow
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End Use
    • 8.3.5. Australia Bio-Manufacturing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Workflow
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End Use

9. South America Bio-Manufacturing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Workflow
    • 9.2.2. By Application
    • 9.2.3. By End Use
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Bio-Manufacturing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Workflow
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End Use
    • 9.3.2. Argentina Bio-Manufacturing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Workflow
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End Use
    • 9.3.3. Colombia Bio-Manufacturing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Workflow
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End Use

10. Middle East and Africa Bio-Manufacturing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Workflow
    • 10.2.2. By Application
    • 10.2.3. By End Use
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Bio-Manufacturing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Workflow
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End Use
    • 10.3.2. Saudi Arabia Bio-Manufacturing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Workflow
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End Use
    • 10.3.3. UAE Bio-Manufacturing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Workflow
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End Use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Illumina Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Thermo Fischer Scientific Inc.
  • 14.3. Oxford Nanopore Technologies plc
  • 14.4. Agilent Technologies, Inc.
  • 14.5. BGI Genomics Co. Ltd.
  • 14.6. PerkinElmer Inc.
  • 14.7. QIAGEN NV
  • 14.8. Eurofins Scientific Inc.
  • 14.9. F. Hoffmann-La Roche Ltd
  • 14.10. Takara Bio Inc.

15. Strategic Recommendations

16. About Us & Disclaimer