封面
市場調查報告書
商品編碼
1778930

低功耗廣域網路市場-全球產業規模、佔有率、趨勢、機會及預測(按技術、應用、最終用戶、地區和競爭)2020-2030F

Low Power Wide Area Network Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, By Technology, By Application, By End User, By Region, By Competition 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球低功耗廣域網路市值為 167.3 億美元,預計到 2030 年將達到 2,391.2 億美元,複合年成長率為 55.78%。全球低功耗廣域網路市場是指專為物聯網 (IoT) 應用設計、提供低功耗遠距離無線通訊的技術和基礎設施生態系統。

市場概覽
預測期 2026-2030
2024年市場規模 167.3億美元
2030年市場規模 2391.2億美元
2025-2030 年複合年成長率 55.78%
成長最快的領域 工業製造
最大的市場 北美洲

這些網路,包括 LoRaWAN、Sigfox 和 NB-IoT 等標準,旨在支援海量設備連接,同時確保較長的電池壽命和成本效益。與傳統蜂窩網路不同,低功耗廣域網路 (LPWAN) 的資料速率較低,非常適合那些不頻繁傳輸少量資料的設備,例如智慧電錶、環境感測器和資產追蹤器。

由於農業、物流、公用事業和製造業等行業加速部署智慧基礎設施和自動化,市場正在經歷強勁成長。政府和企業正在增加對低功耗廣域網路 (LPWAN) 技術的投資,以實現即時監控、預測性維護和營運效率。隨著工業 4.0 和智慧城市計畫的興起,LPWAN 對於遠距離連接遠端電池供電設備至關重要,尤其是在傳統網路難以滿足需求的農村或工業環境中。此外,相容於 LPWAN 的設備和模組日益普及,使得各種規模的企業都能夠更輕鬆地採用該技術並實現可擴展性。

隨著技術進步進一步提升網路容量、覆蓋範圍和互通性,全球低功耗廣域網路市場可望穩定成長。與 5G、邊緣運算和雲端分析平台的整合將擴展低功耗廣域網路 (LPWAN) 的用例,從而實現各行各業更智慧、更數據驅動的決策。此外,隨著能源效率和永續性成為核心業務目標,LPWAN 的低功耗需求將與環境和經濟目標完美契合。加上有利的監管支援和日益加強的生態系統協作,LPWAN 技術有望在下一代全球物聯網基礎設施中發揮基礎性作用。

關鍵市場促進因素

快速採用智慧農業實踐

主要市場挑戰

技術標準碎片化與生態系統不相容

主要市場趨勢

人工智慧在低功耗廣域網路分析中的整合

目錄

第 1 章:解決方案概述

  • 市場定義
  • 市場範圍
    • 覆蓋市場
    • 考慮學習的年限
    • 主要市場區隔

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球低功耗廣域網路市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按技術(LoRaWAN、NB-IoT、SIGFOX、其他)
    • 按應用(智慧建築、智慧燃氣和水監控、智慧廢棄物管理、智慧農業、智慧停車、其他)
    • 按最終用戶(醫療保健、石油和天然氣、工業製造、農業、消費性電子、運輸和物流、其他)
    • 按地區(北美、歐洲、南美、中東和非洲、亞太地區)
  • 按公司分類(2024)
  • 市場地圖

第6章:北美低功耗廣域網路市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲低功耗廣域網路市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙

第8章:亞太低功耗廣域網路市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:中東和非洲低功耗廣域網路市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非

第10章:南美洲低功耗廣域網路市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第13章:公司簡介

  • Semtech Corporation
  • Cisco Systems, Inc.
  • Huawei Technologies Co., Ltd.
  • Nokia Corporation
  • Telefonaktiebolaget LM Ericsson
  • Orange SA
  • AT&T Inc.
  • Vodafone Group Plc

第 14 章:策略建議

第15章調查會社について,免責事項

簡介目錄
Product Code: 30084

Global Low Power Wide Area Network Market was valued at USD 16.73 Billion in 2024 and is expected to reach USD 239.12 Billion by 2030 with a CAGR of 55.78% through 2030. The Global Low Power Wide Area Network Market refers to the ecosystem of technologies and infrastructure that provide long-range wireless communication with low power consumption, specifically designed for Internet of Things (IoT) applications.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 16.73 Billion
Market Size 2030USD 239.12 Billion
CAGR 2025-203055.78%
Fastest Growing SegmentIndustrial Manufacturing
Largest MarketNorth America

These networks, including standards such as LoRaWAN, Sigfox, and NB-IoT, are engineered to support massive device connectivity while ensuring long battery life and cost-efficiency. Unlike traditional cellular networks, Low Power Wide Area Networks (LPWANs) operate at lower data rates, making them ideal for devices that transmit small amounts of data infrequently-such as smart meters, environmental sensors, and asset trackers.

The market is experiencing strong growth due to the accelerating deployment of smart infrastructure and automation across sectors such as agriculture, logistics, utilities, and manufacturing. Governments and enterprises are increasingly investing in LPWAN technologies to enable real-time monitoring, predictive maintenance, and operational efficiency. With the rise of Industry 4.0 and smart city initiatives, LPWANs are becoming critical for connecting remote, battery-powered devices over long distances, especially in rural or industrial environments where traditional networks fall short. Additionally, the growing availability of LPWAN-compatible devices and modules is making adoption more accessible and scalable for enterprises of all sizes.

The Global Low Power Wide Area Network Market is poised to grow steadily as technological advancements further enhance network capacity, coverage, and interoperability. Integration with 5G, edge computing, and cloud-based analytics platforms will expand LPWAN use cases, enabling more intelligent and data-driven decision-making across industries. Moreover, as energy efficiency and sustainability become core business goals, LPWAN's low power requirements will align well with environmental and economic objectives. Combined with favorable regulatory support and increasing ecosystem collaboration, LPWAN technologies are expected to play a foundational role in the next generation of global IoT infrastructure.

Key Market Drivers

Rapid Adoption of Smart Agriculture Practices

The convergence of agriculture and internet of things (IoT) technologies is a pivotal driver for the Global Low Power Wide Area Network Market. Farmers increasingly deploy sensors to monitor soil moisture, nutrient levels, crop growth, and weather conditions. Low Power Wide Area Network (LPWAN) technologies enable these sensors to transmit periodic data over vast farmlands without requiring frequent battery replacements. This long-range, low-power connectivity is essential for supporting precision farming and ensuring sustainable resource management. In 2023, over 1.2 million hectares of farmland across Australia and Europe were equipped with LPWAN-connected soil and irrigation sensors. These systems enabled remote monitoring of moisture and nutrient levels, allowing farmers to automate irrigation, reduce water use, and increase crop yields. This expansion reflects LPWAN's critical role in modern precision farming initiatives.

Artificial intelligence and analytics platforms use this LPWAN-generated data to optimize irrigation, reduce fertilizer use, and forecast yield, which boosts profits and reduces environmental impact. As agricultural enterprises seek data-driven decisions and automated farm operations, the need for reliable connectivity over extensive rural areas becomes imperative. Governments and cooperatives are supporting these initiatives with incentives, further amplifying LPWAN adoption.

Key Market Challenges

Fragmentation of Technology Standards and Ecosystem Incompatibility

The Global Low Power Wide Area Network Market is significantly challenged by the lack of standardized technology frameworks, leading to fragmentation across the ecosystem. Multiple competing technologies-such as LoRaWAN, Sigfox, Weightless, and others-operate within the low power wide area network domain, each with distinct specifications, protocols, and deployment models. This diversity limits interoperability and creates a barrier for enterprises and governments that seek to deploy scalable and future-proof solutions. Without a unified standard, organizations face difficulty in integrating devices and platforms, often requiring vendor-specific infrastructure or gateway devices to bridge communication gaps. This technical inconsistency slows down adoption, drives up implementation costs, and forces businesses to commit prematurely to one ecosystem, potentially locking them into a less optimal solution over time.

Moreover, the lack of global coordination around frequency regulations and spectrum allocation further complicates cross-border or multinational deployment of low power wide area network systems. Many technologies in this market operate in unlicensed spectrum bands, which vary regionally in terms of availability and permissible transmission limits. This means that devices or gateways configured for one country may not comply or function efficiently in another, forcing customization or local sourcing of equipment. For global enterprises and logistics providers, such inconsistency increases operational complexity and overhead. Until a unified standard or broader compatibility framework emerges, businesses will remain cautious in fully committing to large-scale investments in low power wide area network technologies, thus hampering market momentum.

Key Market Trends

Integration of Artificial Intelligence in Low Power Wide Area Network Analytics

The convergence of artificial intelligence with low power wide area network technologies is transforming how data is utilized across connected environments. Artificial intelligence algorithms are increasingly being embedded into edge devices and centralized platforms to derive actionable insights from the vast volume of low-bandwidth, intermittent data collected through low power wide area network infrastructures. These insights enable predictive maintenance, anomaly detection, and automated decision-making in sectors such as manufacturing, logistics, and smart agriculture. Artificial intelligence enhances the ability of organizations to monitor operations in real time, optimize energy use, and respond proactively to issues that traditional monitoring systems might miss.

This trend is fueled by growing enterprise demand for more intelligent, self-sufficient systems that reduce human intervention and enhance operational efficiency. The low power wide area network market is evolving from being merely a data transmission platform to becoming a foundation for distributed intelligence. Solutions are being tailored to process data at the edge, reducing latency and bandwidth use while improving responsiveness. As artificial intelligence models become lighter and more efficient, their compatibility with low power wide area network environments will expand, unlocking new levels of automation and precision across large-scale deployments. This integration is expected to become a core differentiator for low power wide area network vendors in the coming years.

Key Market Players

  • Semtech Corporation
  • Cisco Systems, Inc.
  • Huawei Technologies Co., Ltd.
  • Nokia Corporation
  • Telefonaktiebolaget LM Ericsson
  • Orange S.A.
  • AT&T Inc.
  • Vodafone Group Plc

Report Scope:

In this report, the Global Low Power Wide Area Network Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Low Power Wide Area Network Market, By Technology:

  • LoRaWAN
  • NB-IoT
  • SIGFOX
  • Others

Low Power Wide Area Network Market, By Application:

  • Smart Building
  • Smart Gas and Water Monitoring
  • Smart Waste Management
  • Smart Agriculture
  • Smart Parking
  • Others

Low Power Wide Area Network Market, By End User:

  • Healthcare
  • Oil and Gas
  • Industrial Manufacturing
  • Agriculture
  • Consumer Electronics
  • Transportation and Logistics
  • Others

Low Power Wide Area Network Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa
  • South America
    • Brazil
    • Colombia
    • Argentina

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Low Power Wide Area Network Market.

Available Customizations:

Global Low Power Wide Area Network Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Solution Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Low Power Wide Area Network Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (LoRaWAN, NB-IoT, SIGFOX, Others)
    • 5.2.2. By Application (Smart Building, Smart Gas and Water Monitoring, Smart Waste Management, Smart Agriculture, Smart Parking, Others)
    • 5.2.3. By End User (Healthcare, Oil and Gas, Industrial Manufacturing, Agriculture, Consumer Electronics, Transportation and Logistics, Others)
    • 5.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Low Power Wide Area Network Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology
    • 6.2.2. By Application
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Low Power Wide Area Network Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End User
    • 6.3.2. Canada Low Power Wide Area Network Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End User
    • 6.3.3. Mexico Low Power Wide Area Network Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End User

7. Europe Low Power Wide Area Network Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology
    • 7.2.2. By Application
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Low Power Wide Area Network Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End User
    • 7.3.2. France Low Power Wide Area Network Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End User
    • 7.3.3. United Kingdom Low Power Wide Area Network Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End User
    • 7.3.4. Italy Low Power Wide Area Network Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End User
    • 7.3.5. Spain Low Power Wide Area Network Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End User

8. Asia Pacific Low Power Wide Area Network Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By Application
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Low Power Wide Area Network Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End User
    • 8.3.2. India Low Power Wide Area Network Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End User
    • 8.3.3. Japan Low Power Wide Area Network Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End User
    • 8.3.4. South Korea Low Power Wide Area Network Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End User
    • 8.3.5. Australia Low Power Wide Area Network Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End User

9. Middle East & Africa Low Power Wide Area Network Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By Application
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Low Power Wide Area Network Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End User
    • 9.3.2. UAE Low Power Wide Area Network Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End User
    • 9.3.3. South Africa Low Power Wide Area Network Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End User

10. South America Low Power Wide Area Network Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology
    • 10.2.2. By Application
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Low Power Wide Area Network Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End User
    • 10.3.2. Colombia Low Power Wide Area Network Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End User
    • 10.3.3. Argentina Low Power Wide Area Network Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends and Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Semtech Corporation
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services Offered
  • 13.2. Cisco Systems, Inc.
  • 13.3. Huawei Technologies Co., Ltd.
  • 13.4. Nokia Corporation
  • 13.5. Telefonaktiebolaget LM Ericsson
  • 13.6. Orange S.A.
  • 13.7. AT&T Inc.
  • 13.8. Vodafone Group Plc

14. Strategic Recommendations

15. About Us & Disclaimer