封面
市場調查報告書
商品編碼
1732908

風能雷射雷達市場-全球產業規模、佔有率、趨勢、機會和預測,按部署、按應用、按技術、按範圍、按地區、按競爭進行細分,2020-2030 年預測

Wind LiDAR Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Deployment, By Application, By Technology, By Range, By Region, By Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球風能雷射雷達市場價值為 12.6 億美元,預計到 2030 年將達到 38.2 億美元,複合年成長率為 20.14%。該市場以光探測和測距 (LiDAR) 系統為中心,旨在捕捉風速、方向、切變和湍流等參數,以增強風能項目規劃和氣象準確性。這些系統透過分析大氣粒子散射的雷射,提供不同高度的高解析度 3D 風廓線。與傳統的風速測量法不同,風能雷射雷達具有更高的適應性和精度,特別是在安裝氣象塔成本高或不切實際的海上和偏遠地區。該技術涵蓋脈衝、連續波和多普勒變體,並支援場地評估、渦輪機最佳化、預測性維護和電網整合中的應用。隨著全球再生能源投資的成長,特別是在風能領域,對準確、即時風能資料的需求也在增加,這使得風能雷射雷達系統成為最大化能源輸出和最小化營運風險不可或缺的一部分。

市場概覽
預測期 2026-2030
2024年市場規模 12.6億美元
2030年市場規模 38.2億美元
2025-2030 年複合年成長率 20.14%
成長最快的領域 海上
最大的市場 北美洲

關鍵市場促進因素

全球對再生能源的需求不斷成長,風電擴張

主要市場挑戰

初始成本高且安裝過程複雜

主要市場趨勢

風光雷達系統中高級數據分析和人工智慧的整合

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球風能雷射雷達市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按部署(陸上、海上)
    • 按應用(電力預測、場地評估、渦輪機運行和維護)
    • 按技術(連續波、脈衝)
    • 按射程(短程、中程、長程)
    • 按地區
  • 按公司分類(2024)
  • 市場地圖

第6章:北美風能雷射雷達市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲風能雷射雷達市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙

第8章:亞太地區風能雷射雷達市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:南美風能雷射雷達市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東和非洲風能雷射雷達市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 中東和非洲:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 科威特
    • 土耳其

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第13章:公司簡介

  • Vaisala Oyj
  • Leosphere SAS
  • NRG Systems, Inc.
  • Technical University of Denmark (DTU) - DTU Wind Energy
  • Avent Lidar Technology Ltd.
  • Windar Photonics A/S
  • Clir Renewables Inc.
  • Halo Photonics Ltd.
  • Second Wind, Inc.
  • Metek Meteorologische Messtechnik GmbH

第 14 章:策略建議

第15章調查會社について,免責事項

簡介目錄
Product Code: 29168

The Global Wind LiDAR Market was valued at USD 1.26 Billion in 2024 and is projected to reach USD 3.82 Billion by 2030, growing at a CAGR of 20.14%. This market centers on Light Detection and Ranging (LiDAR) systems engineered to capture wind parameters-such as speed, direction, shear, and turbulence-to enhance wind energy project planning and meteorological accuracy. These systems, which analyze laser light scattered by atmospheric particles, provide high-resolution 3D wind profiles at varying heights. Unlike conventional anemometry, Wind LiDAR offers greater adaptability and precision, especially in offshore and remote locations where installing meteorological towers is costly or impractical. The technology spans pulsed, continuous wave, and Doppler variants and supports applications in site assessment, turbine optimization, predictive maintenance, and grid integration. As renewable energy investments grow worldwide, particularly in wind power, the need for accurate, real-time wind data is increasing, making Wind LiDAR systems integral to maximizing energy output and minimizing operational risk.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.26 Billion
Market Size 2030USD 3.82 Billion
CAGR 2025-203020.14%
Fastest Growing SegmentOffshore
Largest MarketNorth America

Key Market Drivers

Growing Global Demand for Renewable Energy and Wind Power Expansion

The global shift toward renewable energy sources, propelled by international climate targets and governmental mandates, is a key catalyst for the Wind LiDAR Market. Wind energy, with its scalability and sustainability, is central to this transition. Both onshore and offshore wind developments rely on detailed wind assessments for efficient turbine placement. Traditional tools like meteorological towers are often hindered by cost and site limitations. Wind LiDAR offers an effective alternative by delivering accurate wind measurements without the need for large infrastructure, reducing evaluation time and expenses. Global wind capacity, which exceeded 900 GW in 2023, is expected to surpass 1,500 GW by 2030. Offshore wind, growing annually by over 20%, is projected to reach a $200 billion valuation by 2030. Favorable policies and incentives across major markets-Europe, North America, and Asia Pacific-are further accelerating adoption. Wind LiDAR's capabilities in wake effect analysis and turbine performance optimization ensure higher returns for operators, reinforcing its strategic value in the renewable energy ecosystem.

Key Market Challenges

High Initial Costs and Complex Installation Processes

The adoption of Wind LiDAR technology faces notable constraints due to its high upfront costs. These systems integrate sophisticated laser optics and software, leading to prices that exceed those of traditional anemometers. As a result, smaller developers and projects with limited funding often find Wind LiDAR financially inaccessible, especially in emerging markets. Moreover, deployment requires specialized knowledge and technical skill, which may not be readily available across all regions. Installation, calibration, and maintenance processes are intricate, particularly in offshore or rugged terrains where environmental variables like salt exposure and turbulence introduce further complexity. These factors can delay implementation and inflate operational budgets, slowing widespread adoption despite the technology's benefits.

Key Market Trends

Integration of Advanced Data Analytics and AI in Wind LiDAR Systems

A significant trend shaping the Wind LiDAR Market is the integration of artificial intelligence (AI) and advanced data analytics into LiDAR platforms. Historically, Wind LiDAR produced raw data requiring expert interpretation. Today, AI-powered systems enable real-time analysis, predictive maintenance, and anomaly detection, enhancing operational decisions and reducing downtime. These technologies help filter noise, model wind flow, and optimize turbine alignment, thereby increasing efficiency and energy output. The incorporation of cloud and edge computing also enables remote monitoring and fast data processing, which is essential for managing distributed or offshore wind assets. As digital transformation expands across the renewable sector, these intelligent systems align with broader industry goals of improving sustainability, reliability, and cost-effectiveness. The continued evolution of AI models is also expanding Wind LiDAR's application into fields such as aviation, meteorology, and environmental research, making the technology increasingly versatile and indispensable.

Key Market Players

  • Vaisala Oyj
  • Leosphere SAS
  • NRG Systems, Inc.
  • Technical University of Denmark (DTU) - DTU Wind Energy
  • Avent Lidar Technology Ltd.
  • Windar Photonics A/S
  • Clir Renewables Inc.
  • Halo Photonics Ltd.
  • Second Wind, Inc.
  • Metek Meteorologische Messtechnik GmbH

Report Scope:

In this report, the Global Wind LiDAR Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Wind LiDAR Market, By Deployment:

  • Onshore
  • Offshore

Wind LiDAR Market, By Application:

  • Power Forecasting
  • Site Assessment
  • Turbine Operation & Maintenance

Wind LiDAR Market, By Technology:

  • Continuous Wave
  • Pulsed

Wind LiDAR Market, By Range:

  • Short Range
  • Medium Range
  • Long Range

Wind LiDAR Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Wind LiDAR Market.

Available Customizations:

Global Wind LiDAR Market report with the given Market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Wind LiDAR Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Deployment (Onshore, Offshore)
    • 5.2.2. By Application (Power Forecasting, Site Assessment, Turbine Operation & Maintenance)
    • 5.2.3. By Technology (Continuous Wave, Pulsed)
    • 5.2.4. By Range (Short Range, Medium Range, Long Range)
    • 5.2.5. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Wind LiDAR Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Deployment
    • 6.2.2. By Application
    • 6.2.3. By Technology
    • 6.2.4. By Range
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Wind LiDAR Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Deployment
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By Technology
        • 6.3.1.2.4. By Range
    • 6.3.2. Canada Wind LiDAR Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Deployment
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By Technology
        • 6.3.2.2.4. By Range
    • 6.3.3. Mexico Wind LiDAR Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Deployment
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By Technology
        • 6.3.3.2.4. By Range

7. Europe Wind LiDAR Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Deployment
    • 7.2.2. By Application
    • 7.2.3. By Technology
    • 7.2.4. By Range
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Wind LiDAR Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Deployment
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By Technology
        • 7.3.1.2.4. By Range
    • 7.3.2. United Kingdom Wind LiDAR Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Deployment
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By Technology
        • 7.3.2.2.4. By Range
    • 7.3.3. Italy Wind LiDAR Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Deployment
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By Technology
        • 7.3.3.2.4. By Range
    • 7.3.4. France Wind LiDAR Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Deployment
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By Technology
        • 7.3.4.2.4. By Range
    • 7.3.5. Spain Wind LiDAR Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Deployment
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By Technology
        • 7.3.5.2.4. By Range

8. Asia-Pacific Wind LiDAR Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Deployment
    • 8.2.2. By Application
    • 8.2.3. By Technology
    • 8.2.4. By Range
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Wind LiDAR Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Deployment
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By Technology
        • 8.3.1.2.4. By Range
    • 8.3.2. India Wind LiDAR Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Deployment
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By Technology
        • 8.3.2.2.4. By Range
    • 8.3.3. Japan Wind LiDAR Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Deployment
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By Technology
        • 8.3.3.2.4. By Range
    • 8.3.4. South Korea Wind LiDAR Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Deployment
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By Technology
        • 8.3.4.2.4. By Range
    • 8.3.5. Australia Wind LiDAR Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Deployment
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By Technology
        • 8.3.5.2.4. By Range

9. South America Wind LiDAR Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Deployment
    • 9.2.2. By Application
    • 9.2.3. By Technology
    • 9.2.4. By Range
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Wind LiDAR Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Deployment
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By Technology
        • 9.3.1.2.4. By Range
    • 9.3.2. Argentina Wind LiDAR Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Deployment
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By Technology
        • 9.3.2.2.4. By Range
    • 9.3.3. Colombia Wind LiDAR Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Deployment
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By Technology
        • 9.3.3.2.4. By Range

10. Middle East and Africa Wind LiDAR Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Deployment
    • 10.2.2. By Application
    • 10.2.3. By Technology
    • 10.2.4. By Range
    • 10.2.5. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Wind LiDAR Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Deployment
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By Technology
        • 10.3.1.2.4. By Range
    • 10.3.2. Saudi Arabia Wind LiDAR Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Deployment
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By Technology
        • 10.3.2.2.4. By Range
    • 10.3.3. UAE Wind LiDAR Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Deployment
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By Technology
        • 10.3.3.2.4. By Range
    • 10.3.4. Kuwait Wind LiDAR Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Deployment
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By Technology
        • 10.3.4.2.4. By Range
    • 10.3.5. Turkey Wind LiDAR Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Deployment
        • 10.3.5.2.2. By Application
        • 10.3.5.2.3. By Technology
        • 10.3.5.2.4. By Range

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Vaisala Oyj
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Leosphere SAS
  • 13.3. NRG Systems, Inc.
  • 13.4. Technical University of Denmark (DTU) - DTU Wind Energy
  • 13.5. Avent Lidar Technology Ltd.
  • 13.6. Windar Photonics A/S
  • 13.7. Clir Renewables Inc.
  • 13.8. Halo Photonics Ltd.
  • 13.9. Second Wind, Inc.
  • 13.10. Metek Meteorologische Messtechnik GmbH

14. Strategic Recommendations

15. About Us & Disclaimer