封面
市場調查報告書
商品編碼
1916765

全球整合式行動感測器融合市場預測(至2032年):按感測器類型、融合等級、技術、應用、最終用戶和地區分類

Integrated Mobility Sensor Fusion Market Forecasts to 2032 - Global Analysis By Sensor Type (Camera Sensors, Radar Sensors, LiDAR Sensors and Ultrasonic Sensors), Fusion Level, Technology, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球整合式行動感測器融合市場規模將達到 96 億美元,到 2032 年將達到 255 億美元,預測期內複合年成長率為 14.8%。

整合式移動感測器融合技術整合了包括LiDAR、雷達、攝影機和GPS在內的多種感測器的數據,從而為自動駕駛和聯網汽車提供統一、全面的環境感知。這項先進的融合技術顯著提高了精度、冗餘度和情境察覺,實現了更安全的導航和更明智的即時決策。它支援多種應用,包括先進駕駛輔助系統(ADAS)、碰撞避免和動態交通適應。感測器融合技術整合了多種感測器的輸入,對於在複雜多變的環境中實現可靠、高效、安全的自動駕駛至關重要。

自動駕駛汽車日益普及

自動駕駛汽車的日益普及顯著加速了對整合式行動感測器融合解決方案的需求。高級駕駛輔助系統和全自動駕駛平台需要無縫整合來自攝影機、雷達、LiDAR和超音波感測器的數據。感測器融合提高了情境察覺、決策準確性和車輛安全性。隨著汽車製造商追求更高水準的自動化,他們越來越依賴整合感知系統,這使得感測器融合成為支撐智慧移動生態系統演進的基礎技術。

感測器校準和整合挑戰

感測器校準和整合方面的挑戰增加了行動平台部署的複雜性。整合不同的感測器需要精確的對準、同步和即時數據處理,以確保輸出的可靠性。這些挑戰推動了校準演算法和自適應軟體框架的進步。製造商擴大採用標準化的感測器架構和自動化校準技術。整合方法的持續改進有助於系統部署的順利進行,並鞏固感測器融合解決方案在行動應用中的長期應用。

多模態感知系統的進展

多模態感知系統的進步為整合式移動感測器融合創造了巨大的發展機會。視覺、雷達和LiDAR輸入的融合顯著提升了系統在各種運作條件下的環境感知能力。機器學習演算法進一步增強了目標識別和預測能力。這些進步使得系統能夠在複雜的交通環境中保持穩健的效能。隨著移動系統對可靠性和冗餘性的需求日益成長,多模態感測器融合已成為下一代自動駕駛和半自動駕駛車輛的關鍵推動技術。

訊號干擾和數據不準確

訊號干擾和數據不準確會影響整合感測器融合的系統性能。環境噪音、天氣狀況和電磁干擾會影響原始感測器輸出值。為了因應這些因素,解決方案供應商投資開發了先進的濾波技術、冗餘架構和糾錯演算法。這些挑戰非但沒有阻礙發展,反而加速了資料檢驗和融合精度的創新,進一步凸顯了高可靠性感測器融合平台在自動駕駛系統中的重要性。

新冠疫情的影響:

新冠疫情加速了汽車和旅遊領域的數位轉型。儘管車輛生產受到暫時性影響,但對自動駕駛技術和智慧旅行的投資仍在繼續。研發活動日益側重於軟體驅動的感知系統和基於模擬的測試。疫情後的復甦策略強調自動化、安全性和效率,進一步鞏固了全球汽車市場對整合式出行感測器融合解決方案的持續需求。

在預測期內,相機感測器細分市場將佔據最大的市場佔有率。

由於攝影機感測器在駕駛輔助系統和自動汽車平臺中的廣泛應用,預計在預測期內,攝影機感測器細分市場將佔據最大的市場佔有率。攝影機感測器提供高解析度視覺數據,這些數據對於物體偵測、車道識別、交通標誌識別等至關重要。其成本效益和與先進視覺演算法的兼容性促進了其大規模應用。與人工智慧驅動的感知系統的深度整合進一步鞏固了該細分市場在感測器融合架構中的主導地位。

在預測期內,高水準感測器融合領域將實現最高的複合年成長率。

預計在預測期內,高階感測器融合領域將實現最高成長率,這主要得益於軟體定義感知系統的快速發展。高階融合技術整合多個感測器的處理數據,從而實現基於情境的決策。這種方法能夠提高冗餘性、準確性和即時回應能力。日益成長的自主性需求和人工智慧的進步正在加速其應用,使高階感測器融合成為一個快速成長的領域。

佔比最大的地區:

亞太地區預計將在預測期內佔據最大的市場佔有率,這主要歸功於其強大的汽車製造能力和智慧出行技術的快速普及。中國、日本和韓國等國家在自動駕駛汽車研發和智慧交通基礎建設方面一直主導。政府對先進出行創新技術的支持進一步鞏固了該地區的領先地位,並強化了亞太地區在整合出行感測器融合市場的主導地位。

年複合成長率最高的地區:

在預測期內,北美預計將實現最高的複合年成長率,這主要得益於其先進的自動駕駛汽車研發、強大的技術生態系統和良好的創新環境。該地區已見證了感測器融合平台在商用車和乘用車應用中的快速普及。汽車製造商、科技公司和研究機構之間的合作正在加速發展,使北美成為整合移動感測器融合解決方案的高成長市場。

免費客製化服務:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要參與者(最多3家公司)的SWOT分析
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭標竿分析
    • 基於產品系列、地域覆蓋範圍和策略聯盟對主要參與者進行基準分析

目錄

第1章執行摘要

第2章 前言

  • 概括
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球整合式移動感測器融合市場(按感測器類型分類)

  • 相機感光元件
  • 雷達感測器
  • LiDAR感測器
  • 超音波感測器

6. 全球整合式移動感測器融合市場(按融合等級分類)

  • 低階感測器融合
  • 中層感測器融合
  • 高級感測器融合
  • 基於人工智慧的融合

7. 全球整合式移動感測器融合市場(按技術分類)

  • 電腦視覺
  • 機器學習演算法
  • 邊緣處理
  • 即時資料分析

8. 全球整合式行動感測器融合市場(按應用領域分類)

  • ADAS
  • 自動駕駛
  • ITS
  • 機器人移動平台
  • 其他

9. 全球整合式行動感測器融合市場(按最終用戶分類)

  • 汽車製造商
  • 自動駕駛汽車開發商
  • 一級供應商
  • 智慧運輸行業者
  • 其他

10. 全球區域整合式行動感測器融合市場

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • Bosch Mobility Solutions
  • Continental AG
  • Denso Corporation
  • Aptiv PLC
  • Valeo SA
  • ZF Friedrichshafen AG
  • NXP Semiconductors
  • Infineon Technologies
  • Texas Instruments
  • Qualcomm Technologies
  • NVIDIA Corporation
  • Mobileye
  • Renesas Electronics
  • STMicroelectronics
  • Velodyne Lidar
  • Luminar Technologies
Product Code: SMRC33339

According to Stratistics MRC, the Global Integrated Mobility Sensor Fusion Market is accounted for $9.6 billion in 2025 and is expected to reach $25.5 billion by 2032 growing at a CAGR of 14.8% during the forecast period. Integrated Mobility Sensor Fusion combines data from multiple sensors such as LiDAR, radar, cameras, and GPS to create a unified and comprehensive perception of the environment for autonomous and connected vehicles. This advanced fusion technology significantly enhances accuracy, redundancy, and situational awareness, enabling safer navigation and more informed real-time decision-making. It supports a wide range of applications including advanced driver-assistance systems (ADAS), collision avoidance, and dynamic traffic adaptation. By integrating diverse sensor inputs, sensor fusion is essential for achieving reliable, efficient, and safe autonomous mobility in complex and changing environments.

Market Dynamics:

Driver:

Rising adoption of autonomous vehicles

The rising adoption of autonomous vehicles strongly accelerated demand for integrated mobility sensor fusion solutions. Advanced driver-assistance systems and fully autonomous platforms required the seamless integration of data from cameras, radar, lidar, and ultrasonic sensors. Sensor fusion improved situational awareness, decision accuracy, and vehicle safety. As automotive manufacturers advanced toward higher autonomy levels, reliance on integrated perception systems increased, positioning sensor fusion as a foundational technology supporting the evolution of intelligent mobility ecosystems.

Restraint:

Sensor calibration and integration challenges

Sensor calibration and integration challenges influenced deployment complexity within mobility platforms. Integrating heterogeneous sensors required precise alignment, synchronization, and real-time data processing to ensure reliable outputs. These challenges encouraged advancements in calibration algorithms and adaptive software frameworks. Manufacturers increasingly adopted standardized sensor architectures and automated calibration techniques. Continuous improvements in integration methodologies supported smoother system deployment and strengthened long-term adoption of sensor fusion solutions across mobility applications.

Opportunity:

Multi-modal perception system advancements

Advancements in multi-modal perception systems created significant growth opportunities for integrated mobility sensor fusion. Combining visual, radar, and lidar inputs enhanced environmental understanding under diverse operating conditions. Machine learning algorithms further improved object recognition and predictive capabilities. These advancements supported robust performance across complex traffic environments. As mobility systems demanded higher reliability and redundancy, multi-modal sensor fusion emerged as a critical enabler of next-generation autonomous and semi-autonomous vehicles.

Threat:

Signal interference and data inaccuracies

Signal interference and data inaccuracies influenced system performance considerations in integrated sensor fusion. Environmental noise, weather conditions, and electromagnetic interference affected raw sensor outputs. To address these factors, solution providers invested in advanced filtering techniques, redundancy architectures, and error-correction algorithms. Rather than constraining growth, these challenges accelerated innovation in data validation and fusion accuracy, reinforcing the importance of resilient sensor fusion platforms in autonomous mobility systems.

Covid-19 Impact:

The COVID-19 pandemic accelerated digital transformation across the automotive and mobility sectors. While vehicle production experienced temporary disruptions, investments in autonomous technologies and intelligent mobility continued. Research and development activities increasingly focused on software-driven perception systems and simulation-based testing. Post-pandemic recovery strategies emphasized automation, safety, and efficiency, reinforcing sustained demand for integrated mobility sensor fusion solutions across global automotive markets.

The camera sensors segment is expected to be the largest during the forecast period

The camera sensors segment is expected to account for the largest market share during the forecast period, owing to widespread adoption across driver-assistance and autonomous vehicle platforms. Camera sensors delivered high-resolution visual data essential for object detection, lane recognition, and traffic sign identification. Their cost-effectiveness and compatibility with advanced vision algorithms supported large-scale deployment. Strong integration with AI-driven perception systems reinforced the segment's dominant market share within sensor fusion architectures.

The high-level sensor fusion segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the high-level sensor fusion segment is predicted to witness the highest growth rate, reinforced by the growing shift toward software-defined perception systems. High-level fusion enabled contextual decision-making by integrating processed data from multiple sensors. This approach improved redundancy, accuracy, and real-time responsiveness. Increasing autonomy requirements and advancements in artificial intelligence accelerated adoption, positioning high-level sensor fusion as a rapidly expanding segment.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, ascribed to strong automotive manufacturing capacity and rapid adoption of intelligent mobility technologies. Countries such as China, Japan, and South Korea led investments in autonomous vehicle development and smart transportation infrastructure. Government support for advanced mobility innovation further strengthened regional leadership, reinforcing Asia Pacific's dominant position in the integrated mobility sensor fusion market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with advanced autonomous vehicle research, strong technology ecosystems, and favorable innovation environments. The region experienced rapid adoption of sensor fusion platforms across commercial and passenger vehicle applications. Collaboration between automotive OEMs, technology firms, and research institutions accelerated development, positioning North America as a high-growth market for integrated mobility sensor fusion solutions.

Key players in the market

Some of the key players in Integrated Mobility Sensor Fusion Market include Bosch Mobility Solutions, Continental AG, Denso Corporation, Aptiv PLC, Valeo SA, ZF Friedrichshafen AG, NXP Semiconductors, Infineon Technologies, Texas Instruments, Qualcomm Technologies, NVIDIA Corporation, Mobileye, Renesas Electronics, STMicroelectronics, Velodyne Lidar and Luminar Technologies.

Key Developments:

In Jan 2026, Bosch Mobility Solutions signaled robust growth expectations for AI-enabled automotive software and sensor fusion technologies, revealing plans to double mobility segment software and sensor revenues through advanced perception and by-wire systems.

In Jan 2026, Mobileye secured a major contract with a top-10 U.S. automaker to supply next-generation integrated ADAS sensor fusion systems, significantly expanding its production outlook and solidifying its role in scalable driver-assist platforms.

In Sep 2025, Qualcomm Technologies partnered with BMW to launch the Snapdragon Ride Pilot automated driving system, enhancing sensor fusion capabilities across camera, radar, and perception stacks for hands-free driving applications globally.

Sensor Types Covered:

  • Camera Sensors
  • Radar Sensors
  • LiDAR Sensors
  • Ultrasonic Sensors

Fusion Levels Covered:

  • Low-Level Sensor Fusion
  • Mid-Level Sensor Fusion
  • High-Level Sensor Fusion
  • AI-Based Fusion

Technologies Covered:

  • Computer Vision
  • Machine Learning Algorithms
  • Edge Processing
  • Real-Time Data Analytics

Applications Covered:

  • ADAS
  • Autonomous Driving
  • Intelligent Transportation Systems
  • Robotic Mobility Platforms
  • Other Applications

End Users Covered:

  • Automotive OEMs
  • Autonomous Vehicle Developers
  • Tier-1 Suppliers
  • Smart Mobility Operators
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Integrated Mobility Sensor Fusion Market, By Sensor Type

  • 5.1 Introduction
  • 5.2 Camera Sensors
  • 5.3 Radar Sensors
  • 5.4 LiDAR Sensors
  • 5.5 Ultrasonic Sensors

6 Global Integrated Mobility Sensor Fusion Market, By Fusion Level

  • 6.1 Introduction
  • 6.2 Low-Level Sensor Fusion
  • 6.3 Mid-Level Sensor Fusion
  • 6.4 High-Level Sensor Fusion
  • 6.5 AI-Based Fusion

7 Global Integrated Mobility Sensor Fusion Market, By Technology

  • 7.1 Introduction
  • 7.2 Computer Vision
  • 7.3 Machine Learning Algorithms
  • 7.4 Edge Processing
  • 7.5 Real-Time Data Analytics

8 Global Integrated Mobility Sensor Fusion Market, By Application

  • 8.1 Introduction
  • 8.2 ADAS
  • 8.3 Autonomous Driving
  • 8.4 Intelligent Transportation Systems
  • 8.5 Robotic Mobility Platforms
  • 8.6 Other Applications

9 Global Integrated Mobility Sensor Fusion Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive OEMs
  • 9.3 Autonomous Vehicle Developers
  • 9.4 Tier-1 Suppliers
  • 9.5 Smart Mobility Operators
  • 9.6 Other End Users

10 Global Integrated Mobility Sensor Fusion Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Bosch Mobility Solutions
  • 12.2 Continental AG
  • 12.3 Denso Corporation
  • 12.4 Aptiv PLC
  • 12.5 Valeo SA
  • 12.6 ZF Friedrichshafen AG
  • 12.7 NXP Semiconductors
  • 12.8 Infineon Technologies
  • 12.9 Texas Instruments
  • 12.10 Qualcomm Technologies
  • 12.11 NVIDIA Corporation
  • 12.12 Mobileye
  • 12.13 Renesas Electronics
  • 12.14 STMicroelectronics
  • 12.15 Velodyne Lidar
  • 12.16 Luminar Technologies

List of Tables

  • Table 1 Global Integrated Mobility Sensor Fusion Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Integrated Mobility Sensor Fusion Market Outlook, By Sensor Type (2024-2032) ($MN)
  • Table 3 Global Integrated Mobility Sensor Fusion Market Outlook, By Camera Sensors (2024-2032) ($MN)
  • Table 4 Global Integrated Mobility Sensor Fusion Market Outlook, By Radar Sensors (2024-2032) ($MN)
  • Table 5 Global Integrated Mobility Sensor Fusion Market Outlook, By LiDAR Sensors (2024-2032) ($MN)
  • Table 6 Global Integrated Mobility Sensor Fusion Market Outlook, By Ultrasonic Sensors (2024-2032) ($MN)
  • Table 7 Global Integrated Mobility Sensor Fusion Market Outlook, By Fusion Level (2024-2032) ($MN)
  • Table 8 Global Integrated Mobility Sensor Fusion Market Outlook, By Low-Level Sensor Fusion (2024-2032) ($MN)
  • Table 9 Global Integrated Mobility Sensor Fusion Market Outlook, By Mid-Level Sensor Fusion (2024-2032) ($MN)
  • Table 10 Global Integrated Mobility Sensor Fusion Market Outlook, By High-Level Sensor Fusion (2024-2032) ($MN)
  • Table 11 Global Integrated Mobility Sensor Fusion Market Outlook, By AI-Based Fusion (2024-2032) ($MN)
  • Table 12 Global Integrated Mobility Sensor Fusion Market Outlook, By Technology (2024-2032) ($MN)
  • Table 13 Global Integrated Mobility Sensor Fusion Market Outlook, By Computer Vision (2024-2032) ($MN)
  • Table 14 Global Integrated Mobility Sensor Fusion Market Outlook, By Machine Learning Algorithms (2024-2032) ($MN)
  • Table 15 Global Integrated Mobility Sensor Fusion Market Outlook, By Edge Processing (2024-2032) ($MN)
  • Table 16 Global Integrated Mobility Sensor Fusion Market Outlook, By Real-Time Data Analytics (2024-2032) ($MN)
  • Table 17 Global Integrated Mobility Sensor Fusion Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global Integrated Mobility Sensor Fusion Market Outlook, By ADAS (2024-2032) ($MN)
  • Table 19 Global Integrated Mobility Sensor Fusion Market Outlook, By Autonomous Driving (2024-2032) ($MN)
  • Table 20 Global Integrated Mobility Sensor Fusion Market Outlook, By Intelligent Transportation Systems (2024-2032) ($MN)
  • Table 21 Global Integrated Mobility Sensor Fusion Market Outlook, By Robotic Mobility Platforms (2024-2032) ($MN)
  • Table 22 Global Integrated Mobility Sensor Fusion Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global Integrated Mobility Sensor Fusion Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Integrated Mobility Sensor Fusion Market Outlook, By Automotive OEMs (2024-2032) ($MN)
  • Table 25 Global Integrated Mobility Sensor Fusion Market Outlook, By Autonomous Vehicle Developers (2024-2032) ($MN)
  • Table 26 Global Integrated Mobility Sensor Fusion Market Outlook, By Tier-1 Suppliers (2024-2032) ($MN)
  • Table 27 Global Integrated Mobility Sensor Fusion Market Outlook, By Smart Mobility Operators (2024-2032) ($MN)
  • Table 28 Global Integrated Mobility Sensor Fusion Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.