封面
市場調查報告書
商品編碼
1916743

先進晶格結構材料市場預測至2032年:按材料類型、晶格結構、功能特性、技術、應用和地區分類的全球分析

Advanced Lattice-Structured Materials Market Forecasts to 2032 - Global Analysis By Material Type, Lattice Architecture, Functional Property, Technology, Application, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的研究,預計到 2025 年,全球先進晶格結構材料市場規模將達到 736 億美元,到 2032 年將達到 1,129 億美元,預測期內複合年成長率為 6.3%。

先進的晶格結構材料是一種工程複合材料,其特點是具有複雜且重複的幾何框架,能夠最大限度地提高強度重量比。利用積層製造技術和運算設計,這些材料能夠實現傳統固體材料無法達到的性能,例如超輕、抗衝擊和熱調節。其應用領域涵蓋航太、汽車、生物醫學植入和能源系統。透過在微觀和宏觀尺度上精細調控晶格結構,工程師能夠在最佳化機械性能的同時最大限度地減少材料用量。它們代表了永續高性能結構工程領域的突破。

擴大積層製造技術的應用

積層製造技術在航太、汽車和工業領域的日益普及,推動了對先進晶格結構材料的需求。積層製造流程能夠精確生產傳統方法難以製造的複雜晶格形狀。這些優勢有助於提高材料利用率、最佳化設計並實現性能客製化。隨著各產業優先考慮快速原型製作和低浪費生產方式,晶格結構材料正成為建構下一代輕量化、高性能零件的基礎技術。

高昂的材料加工和生產成本

先進的晶格結構材料通常需要昂貴的原料、專用粉末和高能耗的製造過程。金屬粉末、精密印表機和後處理等相關高成本,進一步增加了整體生產成本。這些經濟障礙限制了注重成本的製造商採用此類材料,並阻礙了其在高價值應用之外的商業化。此外,如何在保持結構精度和品質的前提下擴大生產規模仍然是一項挑戰,這進一步限制了其在大規模生產環境中的市場滲透。

輕質高強度結構應用

對輕量化高強度零件日益成長的需求為晶格結構材料創造了巨大的發展機會。這些材料具有優異的強度重量比、能量吸收和熱性能,使其成為航太結構、汽車碰撞部件和先進工業設備的理想選擇。它們能夠在不影響機械完整性的前提下減少材料用量,有助於實現效率和永續性目標。預計拓展其在結構和承載應用中的使用將為市場參與企業開闢新的收入來源。

大規模生產能力受限

從原型階段到大規模生產,先進晶格結構材料面臨許多挑戰。目前的積層製造技術在規模化生產時,往往在成型尺寸、生產效率和一致性方面有其限制。複雜的品管和漫長的生產週期也可能成為大規模應用的障礙。這些限制可能會減緩市場成長,直到製造流程成熟、標準化程度提高,以及經濟高效的大規模製造解決方案商業性化。

新冠疫情的影響:

新冠疫情擾亂了全球製造業活動,影響了原料供應,並延緩了積層製造計劃的進展。臨時停工和物流限制減緩了晶格結構材料的研究、開發和應用。然而,疫情也凸顯了積層製造在分散式按需生產方面的價值。在後疫情時代的復甦中,人們對能夠增強供應鏈韌性、實現快速設計迭代和本地化製造策略的尖端材料重新燃起了興趣。

預計在預測期內,金屬晶格材料細分市場將佔據最大的市場佔有率。

預計在預測期內,金屬晶格材料將佔據最大的市場佔有率,這主要得益於航太、國防和汽車行業的強勁需求,以及其卓越的機械強度、耐熱性和耐久性。金屬晶格材料適用於對承載能力和可靠性要求極高的高性能應用。此外,金屬晶格材料與金屬積層製造技術的兼容性進一步鞏固了其市場地位,促進了其在高價值工業應用中的廣泛應用。

預計在預測期內,週期性晶格結構領域將實現最高的複合年成長率。

由於週期性晶格結構具有可預測的機械性能和高效的設計特性,預計在預測期內,該領域將呈現最高的成長率。這些結構能夠精確控制剛度、變形和能量吸收特性。它們在航太、生物醫學植入和減振零件等領域的日益廣泛應用,正在加速其普及。計算設計與模擬工具的進步,進一步提升了週期性晶格結構在性能驅動型產業的吸引力。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率。快速的工業化進程、不斷擴展的積層製造能力以及對尖端材料研究的大力投入,正推動該地區的成長。中國、日本和韓國等國家正在將晶格材料應用於航太、汽車和電子製造領域。各國政府為促進先進製造技術所採取的舉措,也進一步鞏固了該地區的市場領先地位。

複合年成長率最高的地區:

在預測期內,北美預計將呈現最高的複合年成長率,這主要得益於強勁的研發活動和先進製造技術的早期應用。該地區聚集了許多航太、國防和醫療設備製造商,推動了對高性能晶格材料的需求。此外,蓬勃發展的創新生態系統、不斷成長的積層製造研究經費以及日益密切的產學研合作,都在促進全部區域的市場擴張。

免費客製化服務:

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要參與者(最多3家公司)的SWOT分析
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭標竿分析
    • 根據主要參與者的產品系列、地理覆蓋範圍和策略聯盟進行基準分析

目錄

第1章執行摘要

第2章 前言

  • 概括
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球先進晶格結構材料市場(依材料類型分類)

  • 金屬晶格材料
  • 聚合物晶格材料
  • 陶瓷晶格材料
  • 複合晶格材料
  • 混合複合晶格

6. 全球先進晶格結構材料市場(依晶格結構分類)

  • 週期性晶格結構
  • 機率晶格結構
  • 三重週期極小曲面(TPMS)晶格
  • 梯度密度晶格
  • 層級晶格結構

7. 全球先進晶格結構材料市場(依功能特性分類)

  • 輕量化結構性能
  • 高能量吸收
  • 熱導率控制
  • 聲波阻尼
  • 最佳化的機械強度

8. 全球先進晶格結構材料市場(依技術分類)

  • 積層製造(3D列印)
  • 雷射粉末層熔融
  • 電子束熔化
  • 數位光學處理
  • 直接能量沉積

9. 全球先進晶格結構材料市場(按應用領域分類)

  • 航太結構件
  • 汽車輕量化
  • 生物醫學植入和假體
  • 能量吸收系統
  • 溫度控管解決方案
  • 工業工具和夾具

第10章 全球先進晶格結構材料市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • GE Aerospace
  • 3D Systems Corporation
  • Stratasys Ltd.
  • Desktop Metal, Inc.
  • HP Inc.
  • EOS GmbH
  • Materialise NV
  • Renishaw plc
  • Siemens AG
  • Hexagon AB
  • Autodesk, Inc.
  • Sandvik AB
  • SLM Solutions Group AG
  • DMG Mori AG
  • Arcam AB
  • ExOne Company
  • Dassault Systemes SE
Product Code: SMRC33316

According to Stratistics MRC, the Global Advanced Lattice-Structured Materials Market is accounted for $73.6 billion in 2025 and is expected to reach $112.9 billion by 2032 growing at a CAGR of 6.3% during the forecast period. Advanced Lattice-Structured Materials are engineered composites featuring intricate, repeating geometrical frameworks that maximize strength-to-weight ratios. These materials leverage additive manufacturing and computational design to achieve properties unattainable in traditional solids, such as ultra-lightweight resilience, shock absorption, and thermal regulation. Their applications span aerospace, automotive, biomedical implants, and energy systems. By tailoring lattice geometries at micro and macro scales, engineers can fine-tune mechanical performance while minimizing material usage. They represent a breakthrough in sustainable, high-performance structural engineering.

Market Dynamics:

Driver:

Rising adoption of additive manufacturing

The increasing use of additive manufacturing across aerospace, automotive, and industrial sectors is driving demand for advanced lattice-structured materials. Additive processes enable precise fabrication of complex lattice geometries that are difficult to achieve through conventional manufacturing. These capabilities support material efficiency, design optimization, and performance customization. As industries prioritize rapid prototyping and low-waste production methods, lattice-structured materials are gaining traction as enablers of next-generation lightweight and functionally optimized components.

Restraint:

High material processing and production costs

Advanced lattice-structured materials often involve expensive raw materials, specialized powders, and energy-intensive fabrication processes. High costs associated with metal powders, precision printers, and post-processing treatments increase overall production expenditure. These financial barriers limit adoption among cost-sensitive manufacturers and restrict commercialization beyond high-value applications. Additionally, scaling production while maintaining structural accuracy and quality remains challenging, further constraining market penetration in mass manufacturing environments.

Opportunity:

Lightweight high-strength structural applications

Growing demand for lightweight yet high-strength components is creating strong opportunities for lattice-structured materials. These materials offer superior strength-to-weight ratios, energy absorption, and thermal performance, making them ideal for aerospace structures, automotive crash components, and advanced industrial equipment. Their ability to reduce material usage without compromising mechanical integrity supports efficiency and sustainability goals. Expanding use in structural and load-bearing applications is expected to unlock new revenue streams for market participants.

Threat:

Limited large-scale manufacturing capabilities

The transition from prototyping to large-scale production presents a significant challenge for advanced lattice-structured materials. Current additive manufacturing technologies often face limitations in build size, throughput, and consistency when scaled for mass production. Quality control complexities and longer production cycles can deter high-volume adoption. These constraints may slow market growth until manufacturing processes mature, standardization improves, and cost-effective large-scale fabrication solutions become commercially viable.

Covid-19 Impact:

The COVID-19 pandemic disrupted global manufacturing operations, affecting the supply of raw materials and delaying additive manufacturing projects. Temporary shutdowns and logistics constraints slowed research, development, and deployment of lattice-structured materials. However, the pandemic also highlighted the value of additive manufacturing for decentralized and on-demand production. Post-pandemic recovery has renewed interest in advanced materials that support supply chain resilience, rapid design iteration, and localized manufacturing strategies.

The metallic lattice materials segment is expected to be the largest during the forecast period

The metallic lattice materials segment is expected to account for the largest market share during the forecast period, due to Strong demand from aerospace, defense, and automotive sectors supports adoption due to superior mechanical strength, thermal resistance, and durability. Metallic lattices enable high-performance applications where load-bearing capacity and reliability are critical. Compatibility with metal additive manufacturing technologies further strengthens their market position, driving widespread utilization across high-value industrial applications.

The periodic lattice structures segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the periodic lattice structures segment is predicted to witness the highest growth rate, due to their predictable mechanical behavior and design efficiency. These structures allow precise control over stiffness, deformation, and energy absorption characteristics. Increasing use in aerospace, biomedical implants, and vibration-damping components is accelerating adoption. Advances in computational design and simulation tools are further enhancing the appeal of periodic lattice structures across performance-driven industries.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fulled by rapid industrialization, expanding additive manufacturing capabilities, and strong investments in advanced materials research support regional growth. Countries such as China, Japan, and South Korea are integrating lattice materials into aerospace, automotive, and electronics manufacturing. Government initiatives promoting advanced manufacturing technologies further contribute to the region's market leadership.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR supported by strong R&D activity and early adoption of advanced manufacturing technologies. The presence of leading aerospace, defense, and medical device manufacturers drives demand for high-performance lattice materials. Robust innovation ecosystems, increased funding for additive manufacturing research, and growing collaboration between industry and academia are accelerating market expansion across the region.

Key players in the market

Some of the key players in Advanced Lattice-Structured Materials Market include GE Aerospace, 3D Systems Corporation, Stratasys Ltd., Desktop Metal, Inc., HP Inc., EOS GmbH, Materialise NV, Renishaw plc, Siemens AG, Hexagon AB, Autodesk, Inc., Sandvik AB, SLM Solutions Group AG, DMG Mori AG, Arcam AB, ExOne Company and Dassault Systemes SE

Key Developments:

In December 2025, GE Aerospace unveiled next-generation lattice-engineered turbine components, reducing weight while enhancing thermal resistance. These designs support advanced jet engines and improve fuel efficiency in aerospace applications.

In November 2025, 3D Systems Corporation introduced a new suite of additive manufacturing solutions for lattice structures, enabling medical implants with optimized porosity and mechanical strength for patient-specific applications.

In October 2025, Stratasys Ltd. launched its Lattice Design Toolkit integrated into GrabCAD Print, allowing engineers to create lightweight, customizable lattice geometries for automotive and aerospace prototypes.

Material Types Covered:

  • Metallic Lattice Materials
  • Polymer-Based Lattice Materials
  • Ceramic Lattice Materials
  • Composite Lattice Materials
  • Hybrid Multi-Material Lattices

Lattice Architectures Covered:

  • Periodic Lattice Structures
  • Stochastic Lattice Structures
  • Triply Periodic Minimal Surface (TPMS) Lattices
  • Gradient Density Lattices
  • Hierarchical Lattice Structures

Functional Properties Covered:

  • Lightweight Structural Performance
  • High Energy Absorption
  • Thermal Conductivity Control
  • Acoustic Damping
  • Mechanical Strength Optimization

Technologies Covered:

  • Additive Manufacturing (3D Printing)
  • Laser Powder Bed Fusion
  • Electron Beam Melting
  • Digital Light Processing
  • Direct Energy Deposition

Applications Covered:

  • Aerospace Structural Components
  • Automotive Lightweighting
  • Biomedical Implants & Prosthetics
  • Energy Absorption Systems
  • Thermal Management Solutions
  • Industrial Tooling & Fixtures

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Advanced Lattice-Structured Materials Market, By Material Type

  • 5.1 Introduction
  • 5.2 Metallic Lattice Materials
  • 5.3 Polymer-Based Lattice Materials
  • 5.4 Ceramic Lattice Materials
  • 5.5 Composite Lattice Materials
  • 5.6 Hybrid Multi-Material Lattices

6 Global Advanced Lattice-Structured Materials Market, By Lattice Architecture

  • 6.1 Introduction
  • 6.2 Periodic Lattice Structures
  • 6.3 Stochastic Lattice Structures
  • 6.4 Triply Periodic Minimal Surface (TPMS) Lattices
  • 6.5 Gradient Density Lattices
  • 6.6 Hierarchical Lattice Structures

7 Global Advanced Lattice-Structured Materials Market, By Functional Property

  • 7.1 Introduction
  • 7.2 Lightweight Structural Performance
  • 7.3 High Energy Absorption
  • 7.4 Thermal Conductivity Control
  • 7.5 Acoustic Damping
  • 7.6 Mechanical Strength Optimization

8 Global Advanced Lattice-Structured Materials Market, By Technology

  • 8.1 Introduction
  • 8.2 Additive Manufacturing (3D Printing)
  • 8.3 Laser Powder Bed Fusion
  • 8.4 Electron Beam Melting
  • 8.5 Digital Light Processing
  • 8.6 Direct Energy Deposition

9 Global Advanced Lattice-Structured Materials Market, By Application

  • 9.1 Introduction
  • 9.2 Aerospace Structural Components
  • 9.3 Automotive Lightweighting
  • 9.4 Biomedical Implants & Prosthetics
  • 9.5 Energy Absorption Systems
  • 9.6 Thermal Management Solutions
  • 9.7 Industrial Tooling & Fixtures

10 Global Advanced Lattice-Structured Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 GE Aerospace
  • 12.2 3D Systems Corporation
  • 12.3 Stratasys Ltd.
  • 12.4 Desktop Metal, Inc.
  • 12.5 HP Inc.
  • 12.6 EOS GmbH
  • 12.7 Materialise NV
  • 12.8 Renishaw plc
  • 12.9 Siemens AG
  • 12.10 Hexagon AB
  • 12.11 Autodesk, Inc.
  • 12.12 Sandvik AB
  • 12.13 SLM Solutions Group AG
  • 12.14 DMG Mori AG
  • 12.15 Arcam AB
  • 12.16 ExOne Company
  • 12.17 Dassault Systemes SE

List of Tables

  • Table 1 Global Advanced Lattice-Structured Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Advanced Lattice-Structured Materials Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Advanced Lattice-Structured Materials Market Outlook, By Metallic Lattice Materials (2024-2032) ($MN)
  • Table 4 Global Advanced Lattice-Structured Materials Market Outlook, By Polymer-Based Lattice Materials (2024-2032) ($MN)
  • Table 5 Global Advanced Lattice-Structured Materials Market Outlook, By Ceramic Lattice Materials (2024-2032) ($MN)
  • Table 6 Global Advanced Lattice-Structured Materials Market Outlook, By Composite Lattice Materials (2024-2032) ($MN)
  • Table 7 Global Advanced Lattice-Structured Materials Market Outlook, By Hybrid Multi-Material Lattices (2024-2032) ($MN)
  • Table 8 Global Advanced Lattice-Structured Materials Market Outlook, By Lattice Architecture (2024-2032) ($MN)
  • Table 9 Global Advanced Lattice-Structured Materials Market Outlook, By Periodic Lattice Structures (2024-2032) ($MN)
  • Table 10 Global Advanced Lattice-Structured Materials Market Outlook, By Stochastic Lattice Structures (2024-2032) ($MN)
  • Table 11 Global Advanced Lattice-Structured Materials Market Outlook, By Triply Periodic Minimal Surface (TPMS) Lattices (2024-2032) ($MN)
  • Table 12 Global Advanced Lattice-Structured Materials Market Outlook, By Gradient Density Lattices (2024-2032) ($MN)
  • Table 13 Global Advanced Lattice-Structured Materials Market Outlook, By Hierarchical Lattice Structures (2024-2032) ($MN)
  • Table 14 Global Advanced Lattice-Structured Materials Market Outlook, By Functional Property (2024-2032) ($MN)
  • Table 15 Global Advanced Lattice-Structured Materials Market Outlook, By Lightweight Structural Performance (2024-2032) ($MN)
  • Table 16 Global Advanced Lattice-Structured Materials Market Outlook, By High Energy Absorption (2024-2032) ($MN)
  • Table 17 Global Advanced Lattice-Structured Materials Market Outlook, By Thermal Conductivity Control (2024-2032) ($MN)
  • Table 18 Global Advanced Lattice-Structured Materials Market Outlook, By Acoustic Damping (2024-2032) ($MN)
  • Table 19 Global Advanced Lattice-Structured Materials Market Outlook, By Mechanical Strength Optimization (2024-2032) ($MN)
  • Table 20 Global Advanced Lattice-Structured Materials Market Outlook, By Technology (2024-2032) ($MN)
  • Table 21 Global Advanced Lattice-Structured Materials Market Outlook, By Additive Manufacturing (3D Printing) (2024-2032) ($MN)
  • Table 22 Global Advanced Lattice-Structured Materials Market Outlook, By Laser Powder Bed Fusion (2024-2032) ($MN)
  • Table 23 Global Advanced Lattice-Structured Materials Market Outlook, By Electron Beam Melting (2024-2032) ($MN)
  • Table 24 Global Advanced Lattice-Structured Materials Market Outlook, By Digital Light Processing (2024-2032) ($MN)
  • Table 25 Global Advanced Lattice-Structured Materials Market Outlook, By Direct Energy Deposition (2024-2032) ($MN)
  • Table 26 Global Advanced Lattice-Structured Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 27 Global Advanced Lattice-Structured Materials Market Outlook, By Aerospace Structural Components (2024-2032) ($MN)
  • Table 28 Global Advanced Lattice-Structured Materials Market Outlook, By Automotive Lightweighting (2024-2032) ($MN)
  • Table 29 Global Advanced Lattice-Structured Materials Market Outlook, By Biomedical Implants & Prosthetics (2024-2032) ($MN)
  • Table 30 Global Advanced Lattice-Structured Materials Market Outlook, By Energy Absorption Systems (2024-2032) ($MN)
  • Table 31 Global Advanced Lattice-Structured Materials Market Outlook, By Thermal Management Solutions (2024-2032) ($MN)
  • Table 32 Global Advanced Lattice-Structured Materials Market Outlook, By Industrial Tooling & Fixtures (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.