封面
市場調查報告書
商品編碼
1920923

人工智慧增強型配方策略在最佳化尖端材料性能方面的成長機會

Growth Opportunities in AI-Enhanced Formulation Strategies for Optimized Performance in Advanced Materials

出版日期: | 出版商: Frost & Sullivan | 英文 74 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

利用人工智慧進行材料最佳化,實現可預測且永續的配方策略

人工智慧增強型配方技術正在改變尖端材料的設計、最佳化和商業化方式,使其從經驗實驗轉向預測性、數據驅動的發現。人工智慧、機器學習和材料資訊學的結合,使配方師能夠模擬和最佳化複雜的多成分體系,從而加速性能調優、提升永續性並縮短產品上市時間。本研究檢驗了新興人工智慧平台(由數位雙胞胎、自主實驗室和高通量實驗支援)如何重塑從成分發現到生命週期評估的配方工作流程。

本研究分析了人工智慧能夠獨特解決的關鍵配方難題,評估了生成式設計和強化學習等技術平台,並展示了能夠帶來可衡量性能提升的工業應用案例。研究重點關注創新生態系統的建構、投資和合作趨勢的追蹤以及成長機會的挖掘,並指出了人工智慧、機器人和高效能運算的融合正在推動聚合物、塗料、複合材料、儲能和醫療保健等多個領域的下一代配方科學發展。

目錄

戰略要務

  • 為什麼經濟成長變得越來越困難?
  • 策略要務八要素™:影響成長的因素
  • The Strategic Imperative 8(TM)
  • 三大策略要務對人工智慧增強配方策略在尖端材料最佳化性能的影響
  • 成長機會驅動Growth Pipeline Engine(TM)™
  • 調查方法

成長機會分析

  • 分析範圍
  • 調查細分

成長泉

  • 材料配方目前面臨的挑戰
  • 尋找原料的關鍵挑戰
  • 混合料設計與最佳化的關鍵挑戰
  • 工藝模擬和放大過程中的關鍵挑戰
  • 產品測試與檢驗的關鍵挑戰
  • 生命週期和永續性評估的關鍵挑戰
  • 成長促進因素
  • 成長限制因素

技術分析

  • 人工智慧/機器學習核心框架的進展
  • 模擬數位雙胞胎技術的進展
  • 自主和數據驅動實驗平台的進展
  • 永續性和生命週期智慧技術的進步
  • 知識圖譜、資料基礎設施和雲端平台的進步

專利和研究出版物分析

  • 專利概述
  • 研究出版品概覽

相關人員分析

  • 企業在生態系中的發展
  • 學術機構的重大研究貢獻與突破
  • 主要相關人員之間開展了顯著的合作

資金籌措和投資分析

  • 重大公共投資
  • 重大私人投資

併購分析

  • 著名併購案例

案例研究分析

  • 利用人工智慧驅動的材料資訊加速聚氨酯防火測試
  • 利用人工智慧驅動的複合材料自動化增強複合晶格設計
  • 利用機器學習加速潤滑油配方開發
  • 利用人工智慧驅動的篩檢加速潤滑劑的發現
  • 透過材料資訊學推動熱塑性聚氨酯(TPU)創新
  • 利用人工智慧增強平台探索高熵合金
  • 人工智慧加速低溫合金配方最佳化

分析師觀點及未來展望

  • 分析師觀點
  • 面向未來的趨勢

成長機會領域

  • 成長機會 1:人工智慧引導的自修復材料生命週期開發
  • 成長機會2:可程式設計超材料逆向設計的生成式人工智慧
  • 成長機會3:用於人工生物材料的AI最佳化生物迴路

附錄

  • 技術成熟度等級(TRL)解釋
  • 成長機會帶來的益處和影響
  • 下一步
  • 免責聲明
簡介目錄
Product Code: DB5E

Enabling Predictive and Sustainable Formulation Strategies Through AI-Powered Materials Optimization

AI-enhanced formulation transforms how advanced materials are designed, optimized, and commercialized, shifting from empirical experimentation to predictive, data-driven discovery. By combining AI, ML, and materials informatics, formulators can simulate and optimize complex multi-component systems, accelerating performance tuning, improving sustainability, and reducing time-to-market. This study examines how emerging AI platforms-supported by digital twins, autonomous laboratories, and high-throughput experimentation-reshape formulation workflows from ingredient discovery to life cycle assessment.

The research analyzes key formulation challenges that AI uniquely addresses, evaluates technology enablers such as generative design and reinforcement learning, and highlights industrial use cases demonstrating measurable performance gains. It emphasizes mapping innovation ecosystems, tracking investment and partnership trends, and uncovering growth opportunities where AI convergence with robotics and high-performance computing drives next-generation formulation science across sectors, including polymers, coatings, composites, energy storage, and healthcare.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?
  • The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on AI-Enhanced Formulation Strategies for Optimized Performance in Advanced Materials
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Research Segmentation

Growth Generator

  • Present Challenges in Materials Formulation
  • Key Challenges in Ingredient and Raw Material Discovery
  • Key Challenges in Formulation Design and Optimization
  • Key Challenges in Process Simulation and Scale-Up
  • Key Challenges in Product Testing and Validation
  • Key Challenges in Life Cycle and Sustainability Assessment
  • Growth Drivers
  • Growth Restraints

Technology Analysis

  • Advances in Core AI/ML Frameworks
  • Advances in Simulation and Digital Twin Technologies
  • Advances in Autonomous and Data-Driven Experimentation Platforms
  • Advances in Sustainability and Life Cycle Intelligence Technologies
  • Advances in Knowledge Graphs, Data Infrastructure, and Cloud Platforms

Patent and Research Publications Analysis

  • Overview of Patents
  • Overview of Research Publications

Stakeholder Analysis

  • Company Advancements Around the Ecosystem
  • Important Research Contributions and Breakthroughs from Academic Institutions
  • Notable Collaborations Between Key Stakeholders

Funding and Investment Analysis

  • Key Public Investments
  • Key Private Investments

Mergers and Acquisitions Analysis

  • Notable M&As

Case Study Analysis

  • Accelerating PU Fire Testing Through AI-Driven Material Informatics
  • Augmenting Composite Lattice Design with AI-Enabled Simulation Automation
  • Forwarding Lubricant Formulation Development with ML
  • Catalyzing Lubricant Discovery with AI-Driven Screening
  • Advancing Thermoplastic Polyurethane (TPU) Innovation Through Material Informatics
  • Exploring High-Entropy Alloys with AI-Augmented Platform
  • Optimizing Cryogenic Alloy Formulations with AI Acceleration

Analyst Perspective and Future Outlook

  • Analyst Perspective
  • Future-Looking Trends

Growth Opportunity Universe

  • Growth Opportunity 1: AI-Guided Development of Self-Repairing Material Life Cycles
  • Growth Opportunity 2: Generative AI for Inverse-Design of Programmable Meta-Materials
  • Growth Opportunity 3: AI-Optimized Biological Circuitry for Engineered Living Materials

Appendix

  • Technology Readiness Levels (TRL): Explanation
  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • Legal Disclaimer