封面
市場調查報告書
商品編碼
1904704

FPGA加速市場預測至2032年:全球分析,依架構、結構類型、介面類型、應用、最終用戶及地區分類

FPGA Acceleration Market Forecasts to 2032 - Global Analysis By Architecture (Standalone FPGA, Embedded FPGA, Heterogeneous FPGA and FPGA SoC), Fabric Type, Interface Type, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計到 2025 年全球 FPGA 加速市場規模將達到 76 億美元,到 2032 年將達到 143 億美元,預測期內複合年成長率為 8.1%。

FPGA加速層採用先進的類橡膠聚合物製成,旨在在惡劣環境下保持彈性、耐化學性和機械完整性。與標準彈性體不同,這些材料可在寬廣的溫度範圍(-50 度C至 350 度C)內可靠運行,耐腐蝕性強,且壓縮永久變形低。典型的例子包括氟碳彈性體、矽橡膠和乙丙橡膠。這些材料在航太、石油天然氣和醫療等對密封性、隔振性和耐久性要求極高的產業中至關重要。其優異的韌性確保了在惡劣環境下的安全性和持續運作。

對高效能運算加速的需求

資料密集型工作負載的指數級成長催生了對高效能運算加速的需求,這也是FPGA加速市場的主要驅動力。人工智慧、機器學習、金融建模和科學研究等領域的公司越來越依賴FPGA來分擔CPU的運算密集任務。 FPGA固有的平行處理能力、低延遲和可重構性使其成為加速複雜演算法的理想選擇。隨著雲端運算和邊緣運算部署的日益普及,各組織正在尋求能夠在各種運算環境中平衡效能效率和功耗最佳化的靈活加速解決方案。

複雜的程式設計和開發工作

陡峭的學習曲線以及複雜的程式設計和開發要求仍然是FPGA加速技術普及的主要障礙。基於FPGA的系統設計通常需要專門的硬體說明語言和深厚的架構專業知識,這會增加開發時間和成本。與以軟體為中心的加速器不同,FPGA的採用涉及複雜的軟硬體協同設計過程。這些挑戰可能會成為中小企業和以軟體為中心的組織的障礙。儘管FPGA具有性能優勢,尤其是在對時間要求嚴格的商業和企業級應用中,但熟練的FPGA工程師短缺減緩了其市場滲透速度。

人工智慧和資料中心加速

隨著人工智慧工作負載的擴展和超大規模資料中心的興起,FPGA加速展現出巨大的潛在機會。雲端服務供應商正日益整合FPGA來加速推理、資料分析、加密和網路處理任務。 FPGA的可程式設計使其能夠快速適應不斷演進的人工智慧模型和演算法。出於對節能加速和特定工作負載最佳化的需求,資料中心正利用FPGA來補充GPU和CPU的效能。這一趨勢為雲端基礎設施、人工智慧服務平台和邊緣人工智慧部署創造了強勁的商業前景。

與基於ASIC的加速器的競爭

隨著專用積體電路 (ASIC) 的普及,FPGA 加速市場正面臨日益激烈的競爭壓力。基於 ASIC 的加速器在固定工作負載下具有卓越的效能和能源效率,因此對大規模人工智慧和資料中心部署極具吸引力。大型科技公司對客製化晶片的大量投資可能會限制 FPGA 在某些應用中的使用。此外,規模經濟效應也使 ASIC 在成熟的工作負荷方面更具優勢。這種競爭格局迫使 FPGA 供應商持續創新、改進開發工具,並強調柔軟性優勢,以維持市場佔有率。

新冠疫情的影響:

新冠疫情對FPGA加速市場產生了複雜的影響。初期,供應鏈中斷和半導體製造延遲減緩了硬體的普及。然而,數位轉型加速、雲端遷移以及遠距辦公的增加顯著提升了對資料中心加速解決方案的需求。在醫療建模、影片串流媒體和企業IT基礎設施等領域工作負載激增的推動下,FPGA的普及率強勁反彈。最終,疫情強化了市場對能夠適應動態且不可預測的工作負載模式的靈活、可擴展計算加速器的長期需求。

預計在預測期內,FPGA SoC細分市場將佔據最大的市場佔有率。

由於FPGA SoC架構整合了可程式邏輯和嵌入式處理器,預計在預測期內,FPGA SoC將佔據最大的市場佔有率。這種整合能夠高效處理需要控制和加速功能的複雜工作負載。在汽車ADAS、通訊基礎設施和邊緣AI等領域的需求驅動下,FPGA SoC能夠實現低延遲、低功耗和緊湊的系統設計。它們在異質運算環境中的通用性使其成為大規模和嵌入式加速應用的理想選擇。

預計在預測期內,基於 SRAM 的 FPGA 細分市場將實現最高的複合年成長率。

在預測期內,基於SRAM的FPGA細分市場預計將保持最高的成長率,這主要得益於其卓越的柔軟性、可程式設計和效能可擴展性。這些元件支援頻繁的設計更新,使其成為快速發展的AI、網路和資料中心工作負載的理想選擇。隨著半導體製程的進步和能源效率的提升,基於SRAM的FPGA在雲端運算和高效能運算環境中的應用日益廣泛。與先進開發生態系統的兼容性也進一步推動了市場成長。

佔比最大的地區:

由於亞太地區擁有強大的半導體製造能力和不斷擴展的資料中心基礎設施,預計該地區將在預測期內佔據最大的市場佔有率。中國、日本、韓國和台灣等國家和地區正大力投資人工智慧、5G和雲端運算生態系統。在快速數位化和政府主導的技術舉措的推動下,FPGA加速技術在通訊、工業自動化和家用電子電器等領域的應用日益廣泛,進一步鞏固了該地區的市場主導地位。

複合年成長率最高的地區:

在預測期內,由於人工智慧、雲端運算和超大規模資料中心的積極應用,北美預計將實現最高的複合年成長率。領先的FPGA供應商、雲端服務供應商和技術創新者的存在,正在推動對加速解決方案的持續需求。在自主系統、國防運算和進階分析領域投資的推動下,企業正在擴大FPGA加速器的應用,以實現低延遲、高吞吐量的處理,這使得北美成為成長最快的區域市場。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭標竿分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟進行基準分析

目錄

第1章執行摘要

第2章 前言

  • 摘要
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章 全球FPGA加速市場(依架構分類)

  • 獨立式FPGA
  • 嵌入式FPGA
  • 異構FPGA
  • FPGA SoC

6. 全球FPGA加速市場(依架構類型分類)

  • 基於SRAM的FPGA
  • 基於快閃記憶體的FPGA
  • 基於抗熔絲的FPGA

7. 全球FPGA加速市場依介面類型分類

  • 基於 PCIe 的 FPGA 卡
  • 乙太網路連接的FPGA模組
  • MIPI/CSI介面
  • 客製化互連

第8章:全球FPGA加速市場(按應用分類)

  • 人工智慧和機器學習加速
  • 資料中心加速
  • 網路和邊緣處理
  • 高效能運算
  • 影像和影像處理

9. 全球FPGA加速市場(依最終用戶分類)

  • 資料中心營運商
  • 雲端服務供應商
  • 企業客戶

第10章 全球FPGA加速市場(依地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • AMD(Xilinx)
  • Intel Corporation
  • NVIDIA Corporation
  • Lattice Semiconductor Corporation
  • Microchip Technology Inc.
  • Broadcom Inc.
  • Samsung Electronics Co., Ltd.
  • IBM Corporation
  • Amazon Web Services, Inc.
  • Microsoft Corporation
  • Google LLC
  • Huawei Technologies Co., Ltd.
  • Alibaba Group Holding Limited
  • Baidu, Inc.
  • Inspur Group
  • Fujitsu Limited
  • NEC Corporation
Product Code: SMRC33079

According to Stratistics MRC, the Global FPGA Acceleration Market is accounted for $7.6 billion in 2025 and is expected to reach $14.3 billion by 2032 growing at a CAGR of 8.1% during the forecast period. FPGA Acceleration are advanced rubber-like polymers designed to maintain elasticity, chemical resistance, and mechanical integrity under extreme conditions. Unlike standard elastomers, they operate reliably across wide temperature ranges (-50°C to 350°C), resist aggressive chemicals, and exhibit low compression set. Common types include fluorocarbon, silicone, and ethylene-propylene elastomers. These materials are critical in aerospace, oil & gas, and medical applications where sealing, vibration isolation, and durability are essential. Their resilience ensures safety and operational continuity in harsh environments.

Market Dynamics:

Driver:

Demand for high-performance computing acceleration

Exponential growth in data-intensive workloads, the demand for high-performance computing acceleration is a primary driver for the FPGA acceleration market. Enterprises across AI, machine learning, financial modeling, and scientific research increasingly rely on FPGAs to offload compute-heavy tasks from CPUs. Their inherent parallel processing capability, low latency, and reconfigurability make FPGAs highly attractive for accelerating complex algorithms. Spurred by rising cloud adoption and edge computing deployments, organizations seek flexible acceleration solutions that balance performance efficiency with power optimization across diverse compute environments.

Restraint:

Complex programming and development efforts

Steep learning curves, complex programming and development requirements remain a key restraint in FPGA acceleration adoption. Designing FPGA-based systems often demands specialized hardware description languages and deep architectural expertise, increasing development time and costs. Unlike software-centric accelerators, FPGA deployment involves intricate hardware-software co-design processes. These challenges can deter smaller enterprises and software-focused organizations. Influenced by limited availability of skilled FPGA engineers, market penetration is slowed despite performance advantages, particularly in time-sensitive commercial and enterprise-scale implementations.

Opportunity:

AI and data center acceleration

AI workload expansion and hyperscale data center growth, FPGA acceleration presents significant opportunity potential. Cloud service providers increasingly integrate FPGAs to accelerate inference, data analytics, encryption, and network processing tasks. Their reprogrammability allows rapid adaptation to evolving AI models and algorithms. Motivated by the need for energy-efficient acceleration and workload-specific optimization, data centers are leveraging FPGAs to complement GPUs and CPUs. This trend creates strong commercialization prospects across cloud infrastructure, AI-as-a-service platforms, and edge AI deployments.

Threat:

Competition from ASIC-based accelerators

The rising adoption of application-specific integrated circuits, the FPGA acceleration market faces increasing competitive pressure. ASIC-based accelerators offer superior performance and power efficiency for fixed workloads, making them attractive for large-scale AI and data center deployments. Tech giants investing heavily in custom silicon may limit FPGA adoption in certain applications. Additionally, economies of scale favor ASICs in mature workloads. This competitive landscape challenges FPGA vendors to continuously innovate, enhance development tools, and emphasize flexibility advantages to retain market relevance.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the FPGA acceleration market. Initially, supply chain disruptions and delayed semiconductor manufacturing slowed hardware deployments. However, accelerated digital transformation, cloud migration, and remote operations significantly increased demand for data center acceleration solutions. Spurred by surging workloads in healthcare modeling, video streaming, and enterprise IT infrastructure, FPGA adoption rebounded strongly. The pandemic ultimately reinforced long-term demand for flexible, scalable computing accelerators capable of supporting dynamic and unpredictable workload patterns.

The FPGA SoC segment is expected to be the largest during the forecast period

The FPGA SoC segment is expected to account for the largest market share during the forecast period, resulting from its integrated architecture combining programmable logic with embedded processors. This integration enables efficient handling of complex workloads requiring both control and acceleration functions. Fueled by demand in automotive ADAS, telecom infrastructure, and edge AI, FPGA SoCs deliver reduced latency, lower power consumption, and compact system designs. Their versatility across heterogeneous computing environments positions them as the preferred choice for large-scale and embedded acceleration applications.

The SRAM-based FPGAs segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the SRAM-based FPGAs segment is predicted to witness the highest growth rate, propelled by their superior flexibility, reprogrammability, and performance scalability. These devices allow frequent design updates, making them ideal for rapidly evolving AI, networking, and data center workloads. Motivated by advancements in semiconductor nodes and improved power efficiency, SRAM-based FPGAs are increasingly adopted in cloud and high-performance computing environments. Their compatibility with advanced development ecosystems further accelerates market growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to strong semiconductor manufacturing capabilities and expanding data center infrastructure. Countries such as China, Japan, South Korea, and Taiwan are investing heavily in AI, 5G, and cloud computing ecosystems. Fueled by rapid digitalization and government-backed technology initiatives, FPGA acceleration adoption is rising across telecom, industrial automation, and consumer electronics sectors, reinforcing the region's dominant market position.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with aggressive adoption of AI, cloud computing, and hyperscale data centers. The presence of leading FPGA vendors, cloud service providers, and technology innovators drives continuous demand for acceleration solutions. Spurred by investments in autonomous systems, defense computing, and advanced analytics, enterprises increasingly deploy FPGA accelerators to achieve low-latency and high-throughput processing, positioning North America as the fastest-growing regional market.

Key players in the market

Some of the key players in FPGA Acceleration Market include AMD (Xilinx), Intel Corporation, NVIDIA Corporation, Lattice Semiconductor Corporation, Microchip Technology Inc., Broadcom Inc., Samsung Electronics Co., Ltd., IBM Corporation, Amazon Web Services, Inc., Microsoft Corporation, Google LLC, Huawei Technologies Co., Ltd., Alibaba Group Holding Limited, Baidu, Inc., Inspur Group, Fujitsu Limited and NEC Corporation

Key Developments:

In October 2025, AMD (Xilinx) launched next-generation Versal FPGA accelerators, optimized for AI inference and data center workloads, delivering higher throughput, lower latency, and improved energy efficiency for cloud and edge computing applications.

In September 2025, Intel introduced Agilex FPGA accelerators with integrated chiplet architecture, enabling scalable performance for networking, AI, and HPC workloads, while reducing power consumption and improving flexibility in heterogeneous computing environments.

In September 2025, IBM introduced FPGA acceleration within its hybrid cloud platforms, leveraging programmable logic for AI model training, financial analytics, and scientific simulations, improving scalability and performance.

Architectures Covered:

  • Standalone FPGA
  • Embedded FPGA
  • Heterogeneous FPGA
  • FPGA SoC

Fabric Types Covered:

  • SRAM-Based FPGAs
  • Flash-Based FPGAs
  • Antifuse-Based FPGAs

Interface Types Covered:

  • PCIe-Based FPGA Cards
  • Ethernet-Connected FPGA Modules
  • MIPI/CSI Interfaces
  • Custom Interconnects

Applications Covered:

  • AI & Machine Learning Acceleration
  • Data Center Acceleration
  • Network & Edge Processing
  • High-Performance Computing
  • Video & Image Processing

End Users Covered:

  • Data Center Operators
  • Cloud Service Providers
  • Enterprise Customers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global FPGA Acceleration Market, By Architecture

  • 5.1 Introduction
  • 5.2 Standalone FPGA
  • 5.3 Embedded FPGA
  • 5.4 Heterogeneous FPGA
  • 5.5 FPGA SoC

6 Global FPGA Acceleration Market, By Fabric Type

  • 6.1 Introduction
  • 6.2 SRAM-Based FPGAs
  • 6.3 Flash-Based FPGAs
  • 6.4 Antifuse-Based FPGAs

7 Global FPGA Acceleration Market, By Interface Type

  • 7.1 Introduction
  • 7.2 PCIe-Based FPGA Cards
  • 7.3 Ethernet-Connected FPGA Modules
  • 7.4 MIPI/CSI Interfaces
  • 7.5 Custom Interconnects

8 Global FPGA Acceleration Market, By Application

  • 8.1 Introduction
  • 8.2 AI & Machine Learning Acceleration
  • 8.3 Data Center Acceleration
  • 8.4 Network & Edge Processing
  • 8.5 High-Performance Computing
  • 8.6 Video & Image Processing

9 Global FPGA Acceleration Market, By End User

  • 9.1 Introduction
  • 9.2 Data Center Operators
  • 9.3 Cloud Service Providers
  • 9.4 Enterprise Customers

10 Global FPGA Acceleration Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 AMD (Xilinx)
  • 12.2 Intel Corporation
  • 12.3 NVIDIA Corporation
  • 12.4 Lattice Semiconductor Corporation
  • 12.5 Microchip Technology Inc.
  • 12.6 Broadcom Inc.
  • 12.7 Samsung Electronics Co., Ltd.
  • 12.8 IBM Corporation
  • 12.9 Amazon Web Services, Inc.
  • 12.10 Microsoft Corporation
  • 12.11 Google LLC
  • 12.12 Huawei Technologies Co., Ltd.
  • 12.13 Alibaba Group Holding Limited
  • 12.14 Baidu, Inc.
  • 12.15 Inspur Group
  • 12.16 Fujitsu Limited
  • 12.17 NEC Corporation

List of Tables

  • Table 1 Global FPGA Acceleration Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global FPGA Acceleration Market Outlook, By Architecture (2024-2032) ($MN)
  • Table 3 Global FPGA Acceleration Market Outlook, By Standalone FPGA (2024-2032) ($MN)
  • Table 4 Global FPGA Acceleration Market Outlook, By Embedded FPGA (2024-2032) ($MN)
  • Table 5 Global FPGA Acceleration Market Outlook, By Heterogeneous FPGA (2024-2032) ($MN)
  • Table 6 Global FPGA Acceleration Market Outlook, By FPGA SoC (2024-2032) ($MN)
  • Table 7 Global FPGA Acceleration Market Outlook, By Fabric Type (2024-2032) ($MN)
  • Table 8 Global FPGA Acceleration Market Outlook, By SRAM-Based FPGAs (2024-2032) ($MN)
  • Table 9 Global FPGA Acceleration Market Outlook, By Flash-Based FPGAs (2024-2032) ($MN)
  • Table 10 Global FPGA Acceleration Market Outlook, By Antifuse-Based FPGAs (2024-2032) ($MN)
  • Table 11 Global FPGA Acceleration Market Outlook, By Interface Type (2024-2032) ($MN)
  • Table 12 Global FPGA Acceleration Market Outlook, By PCIe-Based FPGA Cards (2024-2032) ($MN)
  • Table 13 Global FPGA Acceleration Market Outlook, By Ethernet-Connected FPGA Modules (2024-2032) ($MN)
  • Table 14 Global FPGA Acceleration Market Outlook, By MIPI/CSI Interfaces (2024-2032) ($MN)
  • Table 15 Global FPGA Acceleration Market Outlook, By Custom Interconnects (2024-2032) ($MN)
  • Table 16 Global FPGA Acceleration Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global FPGA Acceleration Market Outlook, By AI & Machine Learning Acceleration (2024-2032) ($MN)
  • Table 18 Global FPGA Acceleration Market Outlook, By Data Center Acceleration (2024-2032) ($MN)
  • Table 19 Global FPGA Acceleration Market Outlook, By Network & Edge Processing (2024-2032) ($MN)
  • Table 20 Global FPGA Acceleration Market Outlook, By High-Performance Computing (2024-2032) ($MN)
  • Table 21 Global FPGA Acceleration Market Outlook, By Video & Image Processing (2024-2032) ($MN)
  • Table 22 Global FPGA Acceleration Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global FPGA Acceleration Market Outlook, By Data Center Operators (2024-2032) ($MN)
  • Table 24 Global FPGA Acceleration Market Outlook, By Cloud Service Providers (2024-2032) ($MN)
  • Table 25 Global FPGA Acceleration Market Outlook, By Enterprise Customers (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.