封面
市場調查報告書
商品編碼
1896189

分子育種市場預測至2032年:按作物類型、技術、應用、最終用戶和地區分類的全球分析

Molecular Breeding Market Forecasts to 2032 - Global Analysis By Crop Type (Cereals & Grains, Oilseeds & Pulses, Fruits & Vegetables, Forage & Fodder, and Other Crop Types), Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 預測,全球分子育種市場規模預計在 2025 年達到 98.7 億美元,到 2032 年將達到 339.7 億美元,預測期內複合年成長率 (CAGR) 為 19.3%。分子育種是一種先進的動植物改良方法,它利用分子生物學工具更精確地辨識、選擇和組合理想的遺傳性狀。分子育種整合了標記輔助選擇、基因組選擇和 DNA 定序等技術,加速了傳統的育種過程。透過靶向與產量、品質、抗病性和抗逆性相關的特定基因,分子育種縮短了育種時間,提高了效率,並有助於培育適應不同環境和農業條件的優良品種。

對能夠抵禦氣候變遷的永續農業的需求

農民和政府正將永續農業系統列為優先事項,以確保長期糧食安全。分子育種技術能夠精準辨識並選擇所需性狀,從而快速培育出氣候適應型作物。人們對資源高效型農業的日益關注,推動了先進育種技術的應用。公共和私人對永續農業研發的投資,進一步增強了市場動力。減少化學投入的需求,也促使人們關注具有遺傳耐受性的品種。這些因素共同作用,顯著擴大了全球分子育種市場在不同農業氣候區域的規模。

高昂的初始成本和基礎建設需求

對基因分型平台和數據分析工具等先進基礎設施的需求增加了營運成本。由於資金有限,中小規模的育種計畫往往難以採用這些技術。在發展中地區,研究設施的匱乏進一步阻礙了技術的大規模應用。高昂的技術授權和智慧財產權費用也加重了經濟負擔。漫長的研發週期會延遲市場參與企業的投資報酬率。這些成本相關的挑戰仍然是技術更廣泛應用的障礙,尤其是在資源匱乏的機構中。

生物強化和營養增強作物

分子育種技術描述了提高主糧作物中鐵、鋅、維生素和其他營養素等微量元素含量的精確方法。營養強化品種可以在不改變傳統飲食習慣的情況下解決隱性飢餓(營養不良)問題。各國政府和國際組織正在支持以改善公眾健康為目標的營養育種舉措。基因組學的進步使得快速識別與營養性狀相關的基因成為可能。研究機構和種子企業之間的合作正在加速改良作物的商業化。人們對營養日益成長的關注為分子育種市場創造了巨大的成長機會。

來自其他育種技術的競爭

CRISPR等技術能夠更快、更精準地開發特定應用所需的性狀。一些育種者正將投資轉向下一代工具,以縮短產品開發週期。每項技術的監管不確定性可能會影響其區域應用模式。技術創新的快速發展給分子育種服務提供者帶來了持續提升自身能力的壓力。育種平台之間差異化程度有限,可能導致競爭對手之間相互競爭。替代技術的湧現也可能對分子育種解決方案的長期優勢構成挑戰。

新冠疫情的影響

新冠疫情擾亂了農業研究活動,由於田間試驗受限,育種測試也因此延誤。供應鏈中斷影響了實驗室試劑和育種材料的供應。然而,這場危機凸顯了建構韌性糧食系統的重要性,並加速了人們對先進育種技術的興趣。研究機構加快了數據分析和遠端協作數位化工具的應用。資金優先事項也進行了重新調整,以確保在不確定時期作物產量和糧食安全。種子企業專注於快速開發抗逆性強、產量高的品種。在後疫情時代,分子育種作為增強農業韌性的策略工具,再次受到關注。

預計在預測期內,提高產量細分市場將佔據最大的市場佔有率。

預計在預測期內,產量改良領域將佔據最大的市場佔有率,因為提高作物產量仍然是面臨土地資源限制和糧食需求不斷成長的農民的首要目標。分子標記使育種者能夠更準確、更有效率地選擇高產性狀。與傳統方法相比,這些技術縮短了培育優良品種所需的時間。世界各國政府都在大力支持以產量為導向的育種,以提高糧食自給率。高產品種還能提高農場的盈利,進而促進其廣泛應用。

預計在預測期內,生技公司板塊的複合年成長率將最高。

由於生物技術公司對農業生產和經濟收入的直接影響,預計在預測期內將實現最高成長率。人口成長給全球作物生產系統帶來持續壓力。分子育種有助於釋放遺傳潛力,從而在各種條件下提高產量。農民更傾向於選擇產量高且跨季節表現穩定的品種。種子企業正優先發展這一領域,因為其市場接受度高且易於規模化。公共育種計畫也致力於提高作物在逆境環境下的產量穩定性。

比最大的地區

預計北美地區將在預測期內佔據最大的市場佔有率,因為該地區的公司在基因組學、生物資訊學和分子工具的整合方面處於領先地位。強大的研發能力推動了新型育種解決方案的快速創新和商業化。與農業機構的策略合作正在擴大技術的覆蓋範圍。不斷成長的創業投資投資支持著生物技術主導育種平台的規模化發展。提供客製化性狀解決方案的能力正在增強競爭優勢。

年複合成長率最高的地區

由於亞太地區高度重視創新和技術應用,預計該地區在預測期內將實現最高的複合年成長率。這些參與企業正利用先進的分子技術來縮短育種週期並提高精準度。對特種和高性能作物日益成長的需求正在推動生物技術主導解決方案的發展。完善的智慧財產權架構鼓勵私部門參與。與種子企業的合作正在加速市場滲透。向新興經濟體的擴張正在創造新的收入來源。

提供免費客製化服務

購買此報告的客戶可享有以下免費自訂選項之一:

  • 公司概況
    • 最多三家新增市場參與企業進行全面分析
    • 主要參與企業(最多3家公司)的SWOT分析
  • 區域細分
    • 根據客戶要求,對主要國家進行市場估算和預測,並計算複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 從產品系列、地域覆蓋範圍和策略聯盟等方面對主要參與企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 摘要
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球分子育種市場(依作物類型分類)

  • 穀物/豆​​類
    • 小麥
    • 玉米
  • 油籽/豆類
    • 大豆
    • 菜籽
    • 扁豆和豆類
  • 水果和蔬菜
  • 飼料作物
  • 其他

6. 全球分子育種市場(依技術分類)

  • 標記輔助選擇(MAS)
  • 標記輔助回交(MABC)
  • 基因組選擇
  • 基因改造育種
  • 基因編輯
  • 分子標記平台

7. 全球分子育種市場(依應用領域分類)

  • 耐旱性
  • 抗病性
  • 抗蟲害
  • 產量提升
  • 品質和營養特性
  • 非生物脅迫耐受性
  • 其他

8. 全球分子育種市場(以最終用戶分類)

  • 種子企業
  • 生技公司
  • 研究和學術機構
  • 政府/公共部門
  • 受託研究機構(CRO)
  • 其他

9. 全球分子育種市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Bayer AG
  • KeyGene NV
  • Corteva Agriscience
  • DanBred P/S
  • Syngenta Group
  • Intertek Group plc
  • KWS SAAT SE
  • LemnaTec GmbH
  • Limagrain
  • SGS SA
  • Eurofins Scientific SE
  • LGC Limited
  • Illumina, Inc.
  • Charles River Laboratories International, Inc.
  • Thermo Fisher Scientific Inc.
Product Code: SMRC32877

According to Stratistics MRC, the Global Molecular Breeding Market is accounted for $9.87 billion in 2025 and is expected to reach $33.97 billion by 2032 growing at a CAGR of 19.3% during the forecast period. Molecular breeding is an advanced plant and animal improvement approach that uses molecular biology tools to identify, select, and combine desirable genetic traits with greater precision. It integrates techniques such as marker-assisted selection, genomic selection, and DNA sequencing to accelerate traditional breeding processes. By targeting specific genes linked to yield, quality, disease resistance, and stress tolerance, molecular breeding reduces breeding time, improves efficiency, and enhances the development of superior varieties suited to diverse environmental and agricultural conditions.

Market Dynamics:

Driver:

Demand for climate-resilient & sustainable agriculture

Farmers and governments are increasingly prioritizing sustainable agricultural systems to ensure long-term food security. Molecular breeding enables the rapid development of climate-resilient crops by precisely identifying and selecting desirable traits. Rising awareness about resource-efficient farming is encouraging adoption of advanced breeding approaches. Public and private investments in sustainable agriculture research are further strengthening market momentum. The push to reduce chemical inputs is also driving interest in genetically resilient cultivars. Together, these factors are significantly expanding the global molecular breeding market across diverse agro-climatic regions.

Restraint:

High initial costs & infrastructure needs

The need for sophisticated infrastructure such as genotyping platforms and data analytics tools raises operational costs. Small and medium-sized breeding programs often face difficulties in adopting these technologies due to limited financial resources. In developing regions, inadequate research facilities further constrain large-scale implementation. The high cost of technology licensing and intellectual property adds to the financial burden. Long development timelines can delay returns on investment for market players. These cost-related challenges continue to limit broader adoption, particularly among resource-constrained institutions.

Opportunity:

Biofortified & nutritionally enhanced crops

Molecular breeding offers precise tools to improve micronutrient content such as iron, zinc, and vitamins in staple crops. Biofortified varieties can address hidden hunger without altering traditional dietary habits. Governments and international organizations are supporting nutrition-focused breeding initiatives to improve public health outcomes. Advances in genomics are enabling faster identification of genes linked to nutritional traits. Collaboration between research institutes and seed companies is accelerating commercialization of enhanced crops. This growing focus on nutrition presents significant growth opportunities for the molecular breeding market.

Threat:

Competition from alternative breeding tech

Techniques like CRISPR offer faster trait development with greater precision in certain applications. Some breeders are shifting investments toward these next-generation tools to shorten product development cycles. Regulatory uncertainty around different technologies can influence adoption patterns across regions. The rapid pace of innovation increases pressure on molecular breeding providers to continuously upgrade capabilities. Limited differentiation between breeding platforms may intensify competitive rivalry. As alternative technologies gain traction, they could challenge the long-term dominance of molecular breeding solutions.

Covid-19 Impact:

The COVID-19 pandemic disrupted agricultural research activities and delayed breeding trials due to restricted field access. Supply chain interruptions affected the availability of laboratory reagents and breeding materials. However, the crisis underscored the importance of resilient food systems and accelerated interest in advanced breeding technologies. Research organizations increasingly adopted digital tools for data analysis and remote collaboration. Funding priorities shifted toward ensuring crop productivity and food security during uncertain times. Seed companies focused on fast-tracking resilient and high-yield varieties. In the post-pandemic period, molecular breeding is gaining renewed attention as a strategic tool for agricultural resilience.

The yield improvement segment is expected to be the largest during the forecast period

The yield improvement segment is expected to account for the largest market share during the forecast period, due to enhancing crop productivity remains a primary objective for farmers facing land constraints and growing food demand. Molecular markers enable breeders to efficiently select high-yield traits with greater accuracy. These techniques reduce the time required to develop superior varieties compared to conventional methods. Governments are strongly supporting yield-focused breeding to strengthen food self-sufficiency. High-yield varieties also improve farm profitability, encouraging widespread adoption.

The biotechnology firms segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the biotechnology firms segment is predicted to witness the highest growth rate, driven by its direct impact on agricultural output and economic returns. Increasing population levels are placing constant pressure on global crop production systems. Molecular breeding helps unlock genetic potential that enhances productivity under varying conditions. Farmers prefer yield-enhancing varieties that offer consistent performance across seasons. Seed companies prioritize this segment due to faster market acceptance and scalability. Public breeding programs are also focusing on yield stability in stress-prone environments.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, due to these companies are at the forefront of integrating genomics, bioinformatics, and molecular tools. Strong R&D capabilities enable them to rapidly innovate and commercialize new breeding solutions. Strategic partnerships with agricultural institutes are expanding their technology reach. Increased venture capital funding is supporting the scale-up of biotech-driven breeding platforms. Their ability to offer customized trait solutions enhances competitive advantage.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to their strong focus on innovation and technology adoption. These players leverage advanced molecular techniques to reduce breeding cycles and improve accuracy. Growing demand for trait-specific and high-performance crops favors biotech-led solutions. Supportive intellectual property frameworks are encouraging private sector participation. Collaborations with seed companies are accelerating market penetration. Expansion into emerging economies is opening new revenue streams.

Key players in the market

Some of the key players in Molecular Breeding Market include Bayer AG, KeyGene, Corteva Ag, DanBred, Syngenta, Intertek, KWS SAAT, LemnaTec, Limagrain, SGS SA, Eurofins, LGC Limited, Illumina, Inc., Charles Ri, and Thermo Fi.

Key Developments:

In October 2025, SALIC and Syngenta Signed Agreement to Explore Joint Agriculture Projects that Enhance Food Security in Saudi Arabia and Around the World. This collaboration with Syngenta reflects SALIC's commitment to innovation, sustainability, and global partnerships. Together, we aim to help transform agriculture by integrating technology, knowledge, and responsible practices empowering farmers, conserving resources, and building resilient food systems that strengthen Saudi Arabia's food security and support future generations worldwide.

In August 2025, DuPont de Nemours, Inc., and Corteva, Inc. announced a settlement to comprehensively resolve all pending environmental and other claims by the State of New Jersey against the Companies in various litigation matters and other state directives. The Settlement will resolve all legacy contamination claims related to the companies' current and former operating sites (Chambers Works, Parlin, Pompton Lakes and Repauno) and claims of statewide PFAS contamination unrelated to those sites, including from the use of aqueous film forming foam.

Crop Types Covered:

  • Cereals & Grains
  • Oilseeds & Pulses
  • Fruits & Vegetables
  • Forage & Fodder
  • Other Crop Types

Technologies Covered:

  • Marker-Assisted Selection (MAS)
  • Marker-Assisted Backcrossing (MABC)
  • Genomic Selection
  • Transgenic Breeding
  • Gene Editing
  • Molecular Marker Platforms

Applications Covered:

  • Drought Tolerance
  • Disease Resistance
  • Pest Resistance
  • Yield Improvement
  • Quality & Nutritional Traits
  • Abiotic Stress Resistance
  • Other Applications

End Users Covered:

  • Seed Companies
  • Biotechnology Firms
  • Research & Academic Institutes
  • Government & Public Sector
  • Contract Research Organizations (CROs)
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Molecular Breeding Market, By Crop Type

  • 5.1 Introduction
  • 5.2 Cereals & Grains
    • 5.2.1 Wheat
    • 5.2.2 Rice
    • 5.2.3 Maize
  • 5.3 Oilseeds & Pulses
    • 5.3.1 Soybean
    • 5.3.2 Canola
    • 5.3.3 Lentils/Beans
  • 5.4 Fruits & Vegetables
  • 5.5 Forage & Fodder
  • 5.6 Other Crop Types

6 Global Molecular Breeding Market, By Technology

  • 6.1 Introduction
  • 6.2 Marker-Assisted Selection (MAS)
  • 6.3 Marker-Assisted Backcrossing (MABC)
  • 6.4 Genomic Selection
  • 6.5 Transgenic Breeding
  • 6.6 Gene Editing
  • 6.7 Molecular Marker Platforms

7 Global Molecular Breeding Market, By Application

  • 7.1 Introduction
  • 7.2 Drought Tolerance
  • 7.3 Disease Resistance
  • 7.4 Pest Resistance
  • 7.5 Yield Improvement
  • 7.6 Quality & Nutritional Traits
  • 7.7 Abiotic Stress Resistance
  • 7.8 Other Applications

8 Global Molecular Breeding Market, By End User

  • 8.1 Introduction
  • 8.2 Seed Companies
  • 8.3 Biotechnology Firms
  • 8.4 Research & Academic Institutes
  • 8.5 Government & Public Sector
  • 8.6 Contract Research Organizations (CROs)
  • 8.7 Other End Users

9 Global Molecular Breeding Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Bayer AG
  • 11.2 KeyGene N.V.
  • 11.3 Corteva Agriscience
  • 11.4 DanBred P/S
  • 11.5 Syngenta Group
  • 11.6 Intertek Group plc
  • 11.7 KWS SAAT SE
  • 11.8 LemnaTec GmbH
  • 11.9 Limagrain
  • 11.10 SGS SA
  • 11.11 Eurofins Scientific SE
  • 11.12 LGC Limited
  • 11.13 Illumina, Inc.
  • 11.14 Charles River Laboratories International, Inc.
  • 11.15 Thermo Fisher Scientific Inc.

List of Tables

  • Table 1 Global Molecular Breeding Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Molecular Breeding Market Outlook, By Crop Type (2024-2032) ($MN)
  • Table 3 Global Molecular Breeding Market Outlook, By Cereals & Grains (2024-2032) ($MN)
  • Table 4 Global Molecular Breeding Market Outlook, By Wheat (2024-2032) ($MN)
  • Table 5 Global Molecular Breeding Market Outlook, By Rice (2024-2032) ($MN)
  • Table 6 Global Molecular Breeding Market Outlook, By Maize (2024-2032) ($MN)
  • Table 7 Global Molecular Breeding Market Outlook, By Oilseeds & Pulses (2024-2032) ($MN)
  • Table 8 Global Molecular Breeding Market Outlook, By Soybean (2024-2032) ($MN)
  • Table 9 Global Molecular Breeding Market Outlook, By Canola (2024-2032) ($MN)
  • Table 10 Global Molecular Breeding Market Outlook, By Lentils/Beans (2024-2032) ($MN)
  • Table 11 Global Molecular Breeding Market Outlook, By Fruits & Vegetables (2024-2032) ($MN)
  • Table 12 Global Molecular Breeding Market Outlook, By Forage & Fodder (2024-2032) ($MN)
  • Table 13 Global Molecular Breeding Market Outlook, By Other Crop Types (2024-2032) ($MN)
  • Table 14 Global Molecular Breeding Market Outlook, By Technology (2024-2032) ($MN)
  • Table 15 Global Molecular Breeding Market Outlook, By Marker-Assisted Selection (MAS) (2024-2032) ($MN)
  • Table 16 Global Molecular Breeding Market Outlook, By Marker-Assisted Backcrossing (MABC) (2024-2032) ($MN)
  • Table 17 Global Molecular Breeding Market Outlook, By Genomic Selection (2024-2032) ($MN)
  • Table 18 Global Molecular Breeding Market Outlook, By Transgenic Breeding (2024-2032) ($MN)
  • Table 19 Global Molecular Breeding Market Outlook, By Gene Editing (2024-2032) ($MN)
  • Table 20 Global Molecular Breeding Market Outlook, By Molecular Marker Platforms (2024-2032) ($MN)
  • Table 21 Global Molecular Breeding Market Outlook, By Application (2024-2032) ($MN)
  • Table 22 Global Molecular Breeding Market Outlook, By Drought Tolerance (2024-2032) ($MN)
  • Table 23 Global Molecular Breeding Market Outlook, By Disease Resistance (2024-2032) ($MN)
  • Table 24 Global Molecular Breeding Market Outlook, By Pest Resistance (2024-2032) ($MN)
  • Table 25 Global Molecular Breeding Market Outlook, By Yield Improvement (2024-2032) ($MN)
  • Table 26 Global Molecular Breeding Market Outlook, By Quality & Nutritional Traits (2024-2032) ($MN)
  • Table 27 Global Molecular Breeding Market Outlook, By Abiotic Stress Resistance (2024-2032) ($MN)
  • Table 28 Global Molecular Breeding Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Molecular Breeding Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Molecular Breeding Market Outlook, By Seed Companies (2024-2032) ($MN)
  • Table 31 Global Molecular Breeding Market Outlook, By Biotechnology Firms (2024-2032) ($MN)
  • Table 32 Global Molecular Breeding Market Outlook, By Research & Academic Institutes (2024-2032) ($MN)
  • Table 33 Global Molecular Breeding Market Outlook, By Government & Public Sector (2024-2032) ($MN)
  • Table 34 Global Molecular Breeding Market Outlook, By Contract Research Organizations (CROs) (2024-2032) ($MN)
  • Table 35 Global Molecular Breeding Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.